Around the bounded L2 curvature conjecture in general relativity
Journées équations aux dérivées partielles (2008), article no. 9, 15 p.

We report on recent progress obtained on the construction and control of a parametrix to the homogeneous wave equation gφ=0, where is a rough metric satisfying the Einstein vacuum equations. Controlling such a parametrix as well as its error term when one only assumes L2 bounds on the curvature tensor R of is a major step towards the proof of the bounded L2 curvature conjecture.

DOI : 10.5802/jedp.53
Klainerman, Sergiu 1 ; Rodnianski, Igor 1 ; Szeftel, Jeremie 2

1 Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton NJ 08544-1000 USA
2 Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton NJ 08544-1000 USA and Mathématiques Appliquées de Bordeaux, UMR CNRS 5466, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence cedex FRANCE
@incollection{JEDP_2008____A9_0,
     author = {Klainerman, Sergiu and Rodnianski, Igor and Szeftel, Jeremie},
     title = {Around the bounded $L^2$ curvature conjecture in general relativity},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {9},
     pages = {1--15},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2008},
     doi = {10.5802/jedp.53},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jedp.53/}
}
TY  - JOUR
AU  - Klainerman, Sergiu
AU  - Rodnianski, Igor
AU  - Szeftel, Jeremie
TI  - Around the bounded $L^2$ curvature conjecture in general relativity
JO  - Journées équations aux dérivées partielles
PY  - 2008
SP  - 1
EP  - 15
PB  - Groupement de recherche 2434 du CNRS
UR  - https://www.numdam.org/articles/10.5802/jedp.53/
DO  - 10.5802/jedp.53
LA  - en
ID  - JEDP_2008____A9_0
ER  - 
%0 Journal Article
%A Klainerman, Sergiu
%A Rodnianski, Igor
%A Szeftel, Jeremie
%T Around the bounded $L^2$ curvature conjecture in general relativity
%J Journées équations aux dérivées partielles
%D 2008
%P 1-15
%I Groupement de recherche 2434 du CNRS
%U https://www.numdam.org/articles/10.5802/jedp.53/
%R 10.5802/jedp.53
%G en
%F JEDP_2008____A9_0
Klainerman, Sergiu; Rodnianski, Igor; Szeftel, Jeremie. Around the bounded $L^2$ curvature conjecture in general relativity. Journées équations aux dérivées partielles (2008), article  no. 9, 15 p. doi : 10.5802/jedp.53. https://www.numdam.org/articles/10.5802/jedp.53/

[1] Bahouri, Hajer; Chemin, Jean-Yves Équations d’ondes quasilinéaires et effet dispersif, Internat. Math. Res. Notices (1999) no. 21, pp. 1141-1178 | MR | Zbl

[2] Bahouri, Hajer; Chemin, Jean-Yves Équations d’ondes quasilinéaires et estimations de Strichartz, Amer. J. Math., Volume 121 (1999) no. 6, pp. 1337-1377 | MR | Zbl

[3] Bartnik, Robert Existence of maximal surfaces in asymptotically flat spacetimes, Comm. Math. Phys., Volume 94 (1984) no. 2, pp. 155-175 | MR | Zbl

[4] Christodoulou, Demetrios; Klainerman, Sergiu The global nonlinear stability of the Minkowski space, Princeton Mathematical Series, 41, Princeton University Press, Princeton, NJ, 1993 | MR | Zbl

[5] Fourès-Bruhat, Y. Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math., Volume 88 (1952), pp. 141-225 | MR | Zbl

[6] Hughes, Thomas J. R.; Kato, Tosio; Marsden, Jerrold E. Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal., Volume 63 (1976) no. 3, p. 273-294 (1977) | MR | Zbl

[7] Klainerman, S.; Machedon, M. Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math., Volume 46 (1993) no. 9, pp. 1221-1268 | MR | Zbl

[8] Klainerman, S.; Machedon, M. Estimates for null forms and the spaces Hs,δ, Internat. Math. Res. Notices (1996) no. 17, pp. 853-865 | MR | Zbl

[9] Klainerman, S.; Rodnianski, I. Improved local well-posedness for quasilinear wave equations in dimension three, Duke Math. J., Volume 117 (2003) no. 1, pp. 1-124 | MR | Zbl

[10] Klainerman, S.; Rodnianski, I. A geometric approach to the Littlewood-Paley theory, Geom. Funct. Anal., Volume 16 (2006) no. 1, pp. 126-163 | MR

[11] Klainerman, S.; Rodnianski, I. Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux, Geom. Funct. Anal., Volume 16 (2006) no. 1, pp. 164-229 | MR

[12] Klainerman, Sergiu PDE as a unified subject, Geom. Funct. Anal. (2000) no. Special Volume, Part I, pp. 279-315 GAFA 2000 (Tel Aviv, 1999) | MR | Zbl

[13] Klainerman, Sergiu; Rodnianski, Igor Ricci defects of microlocalized Einstein metrics, J. Hyperbolic Differ. Equ., Volume 1 (2004) no. 1, pp. 85-113 | MR | Zbl

[14] Klainerman, Sergiu; Rodnianski, Igor Bilinear estimates on curved space-times, J. Hyperbolic Differ. Equ., Volume 2 (2005) no. 2, pp. 279-291 | MR

[15] Klainerman, Sergiu; Rodnianski, Igor Causal geometry of Einstein-vacuum spacetimes with finite curvature flux, Invent. Math., Volume 159 (2005) no. 3, pp. 437-529 | MR | Zbl

[16] Klainerman, Sergiu; Rodnianski, Igor The causal structure of microlocalized rough Einstein metrics, Ann. of Math. (2), Volume 161 (2005) no. 3, pp. 1195-1243 | MR | Zbl

[17] Klainerman, Sergiu; Rodnianski, Igor Rough solutions of the Einstein-vacuum equations, Ann. of Math. (2), Volume 161 (2005) no. 3, pp. 1143-1193 | MR | Zbl

[18] Lindblad, Hans Counterexamples to local existence for semi-linear wave equations, Amer. J. Math., Volume 118 (1996) no. 1, pp. 1-16 | MR | Zbl

[19] Ponce, Gustavo; Sideris, Thomas C. Local regularity of nonlinear wave equations in three space dimensions, Comm. Partial Differential Equations, Volume 18 (1993) no. 1-2, pp. 169-177 | MR | Zbl

[20] Smith, Hart F. A parametrix construction for wave equations with C1,1 coefficients, Ann. Inst. Fourier (Grenoble), Volume 48 (1998) no. 3, pp. 797-835 | Numdam | MR | Zbl

[21] Smith, Hart F.; Sogge, Christopher D. On Strichartz and eigenfunction estimates for low regularity metrics, Math. Res. Lett., Volume 1 (1994) no. 6, pp. 729-737 | MR | Zbl

[22] Smith, Hart F.; Tataru, Daniel Sharp local well-posedness results for the nonlinear wave equation, Ann. of Math. (2), Volume 162 (2005) no. 1, pp. 291-366 | MR | Zbl

[23] Stein, Elias M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993 (With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III) | MR | Zbl

[24] Tataru, Daniel Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Amer. J. Math., Volume 122 (2000) no. 2, pp. 349-376 | MR | Zbl

[25] Tataru, Daniel Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III, J. Amer. Math. Soc., Volume 15 (2002) no. 2, p. 419-442 (electronic) | MR | Zbl

Cité par Sources :