We present here a systematic method of derivation of asymptotic models for internal waves, that is, for the propagation of waves at the interface of two fluids of different densities. Many physical regimes are investigated, depending on the physical parameters (depth of the fluids, amplitude and wavelength of the interface deformations). This systematic method allows us to recover the many models existing in the literature and to derive some new models, in particular in the case of large amplitude internal waves and two-dimensional interfaces. We also provide rigorous consistency results for these models. We refer to [5] for full details.
@article{JEDP_2008____A5_0, author = {Bona, J. and Lannes, D. and Saut, J.-C.}, title = {Asymptotic behaviors of internal waves}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {5}, pages = {1--17}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2008}, doi = {10.5802/jedp.49}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.49/} }
TY - JOUR AU - Bona, J. AU - Lannes, D. AU - Saut, J.-C. TI - Asymptotic behaviors of internal waves JO - Journées équations aux dérivées partielles PY - 2008 SP - 1 EP - 17 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.49/ DO - 10.5802/jedp.49 LA - en ID - JEDP_2008____A5_0 ER -
%0 Journal Article %A Bona, J. %A Lannes, D. %A Saut, J.-C. %T Asymptotic behaviors of internal waves %J Journées équations aux dérivées partielles %D 2008 %P 1-17 %I Groupement de recherche 2434 du CNRS %U http://www.numdam.org/articles/10.5802/jedp.49/ %R 10.5802/jedp.49 %G en %F JEDP_2008____A5_0
Bona, J.; Lannes, D.; Saut, J.-C. Asymptotic behaviors of internal waves. Journées équations aux dérivées partielles (2008), article no. 5, 17 p. doi : 10.5802/jedp.49. http://www.numdam.org/articles/10.5802/jedp.49/
[1] B. Alvarez-Samaniego and D. Lannes, Large time existence for water-waves and asymptotics, Invent. math. 171 (2008) 485-541. | MR | Zbl
[2] T.B. Benjamin and T.J. Bridges, Reappraisal of the KelvinHelmholtz problem. Part 1. Hamiltonian structure, J. Fluid Mech. 333 (1997) 301-325. | MR | Zbl
[3] J. L. Bona, T. Colin and D. Lannes, Long wave approximations for water-waves, Arch. Rational Mech. Anal. 178 (2005) 373-410. | MR | Zbl
[4] J. L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. Part I. Derivation and linear theory, J. Nonlinear Sci. 12 (2002) 283-318. | MR | Zbl
[5] J. Bona, D. Lannes and J.-C. Saut, Asymptotic models for internal waves, J. Math. Pures Appl. 89 (2008) 538-566. | MR | Zbl
[6] W. Choi and R. Camassa, Weakly nonlinear internal waves in a two-fluid system, J. Fluid Mech. 313 (1996) 83-103. | MR | Zbl
[7] W. Choi and R. Camassa, Fully nonlinear internal waves in a two-fluid system, J. Fluid Mech. 396 (1999) 1-36. | MR | Zbl
[8] P. Constantin, On the Euler equations of incompressible fluids, Bull. AMS 44, 4, (2007), 603-621. | MR | Zbl
[9] W. Craig, P. Guyenne, and H. Kalisch, Hamiltonian long-wave expansions for free surfaces and interfaces, Comm. Pure. Appl. Math. 58 (2005) 1587-1641. | MR | Zbl
[10] W. Craig, U. Schanz and C. Sulem, The modulational regime of three-dimensional water waves and the Davey-Stewartson system, Ann. Inst. H. Poincaré, Anal. Non Linéaire 14 (1997) 615-667. | Numdam | MR | Zbl
[11] W. Craig, C. Sulem and P.-L. Sulem, Nonlinear modulation of gravity waves: a rigorous approach, Nonlinearity 5 (1992) 497-522. | MR | Zbl
[12] K.R. Helfrich and W.K. Melville, Long nonlinear internal waves, Annual Review of Fluid Mechanics 38 (2006) 395-425. | MR | Zbl
[13] T. Iguchi, N. Tanaka and A. Tani, On the two-phase free boundary problem for two-dimensional water waves, Math. Ann. 309 (1997) 199-223. | MR | Zbl
[14] D. Lannes, Well-posedness of the water-waves equations, J. Amer. Math. Soc. 18 (2005) 605-654. | MR | Zbl
[15] H.Y. Nguyen and F. Dias, A Boussinesq system for two-way propagation of interfacial waves, preprint , (2007). | MR
[16] K. Ohi and T. Iguchi, A two-phase problem for capillary-gravity waves and the Benjamin-Ono equation, Discrete Contin. Dyn. Syst. 23 (2009) 1205-1240. | MR | Zbl
[17] C. Sulem and P.-L. Sulem, Finite time analyticity for the two- and three-dimensional Rayleigh-Taylor instability, Trans. American Math. Soc. 287 (1985) 127-160. | MR | Zbl
[18] C. Sulem, P.-L. Sulem, C. Bardos and U. Frisch, Finite time analyticity for the two- and three-dimensional Kelvin-Helmholtz instability, Comm. Math. Phys. 80 (1981) 485-516. | MR | Zbl
[19] V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 2 (1968) 190-194.
Cité par Sources :