We describe the generic behavior of the resonance counting function for a Schrödinger operator with a bounded, compactly-supported real or complex valued potential in dimensions. This note contains a sketch of the proof of our main results [5, 6] that generically the order of growth of the resonance counting function is the maximal value in the odd dimensional case, and that it is the maximal value on each nonphysical sheet of the logarithmic Riemann surface in the even dimensional case. We include a review of previous results concerning the resonance counting functions for Schrödinger operators with compactly-supported potentials.
@article{JEDP_2008____A3_0, author = {Christiansen, T. J. and Hislop, P. D.}, title = {Resonances for {Schr\"odinger} operators with compactly supported potentials}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {3}, pages = {1--18}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2008}, doi = {10.5802/jedp.47}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.47/} }
TY - JOUR AU - Christiansen, T. J. AU - Hislop, P. D. TI - Resonances for Schrödinger operators with compactly supported potentials JO - Journées équations aux dérivées partielles PY - 2008 SP - 1 EP - 18 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.47/ DO - 10.5802/jedp.47 LA - en ID - JEDP_2008____A3_0 ER -
%0 Journal Article %A Christiansen, T. J. %A Hislop, P. D. %T Resonances for Schrödinger operators with compactly supported potentials %J Journées équations aux dérivées partielles %D 2008 %P 1-18 %I Groupement de recherche 2434 du CNRS %U http://www.numdam.org/articles/10.5802/jedp.47/ %R 10.5802/jedp.47 %G en %F JEDP_2008____A3_0
Christiansen, T. J.; Hislop, P. D. Resonances for Schrödinger operators with compactly supported potentials. Journées équations aux dérivées partielles (2008), article no. 3, 18 p. doi : 10.5802/jedp.47. http://www.numdam.org/articles/10.5802/jedp.47/
[1] R. Bañuelos, A. Sá Barreto, On the heat trace of Schrödinger operators, Comm. Partial Differential Equations 20 (1995), no. 11-12, 2153–2164. | MR | Zbl
[2] T. Christiansen, Some lower bounds on the number of resonances in Euclidean scattering, Math. Res. Lett. 6 (1999), no. 2, 203–211. | MR | Zbl
[3] T. Christiansen, Several complex variables and the distribution of resonances for potential scattering, Commun. Math. Phys 259 (2005), 711-728. | MR | Zbl
[4] T. Christiansen, Schrödinger operators with complex-valued potentials and no resonances, Duke Math Journal 133, no. 2 (2006), 313-323. | MR | Zbl
[5] T. Christiansen and P. D. Hislop, The resonance counting function for Schrödinger operators with generic potentials, Math. Research Letters, 12 (6) (2005), 821-826. | MR | Zbl
[6] T. Christiansen and P. D. Hislop, Maximal order of growth for the resonance counting function for generic potentials in even dimensions, submitted, arXiv:0811.4761v1.
[7] R. Froese, Asymptotic distribution of resonances in one dimension, J. Differential Equations 137 (1997), no. 2, 251–272. | MR | Zbl
[8] R. Froese, Upper bounds for the resonance counting function of Schrödinger operators in odd dimensions, Canad. J. Math. 50 (1998), no. 3, 538–546. | MR | Zbl
[9] A. Intissar, A polynomial bound on the number of the scattering poles for a potential in even dimensional spaces , Comm. in Partial Diff. Eqns. 11, No. 4 (1986), 367–396. | MR | Zbl
[10] P. D. Lax and R. S. Phillips, Decaying modes for the wave equation in the exterior of an obstacle, Comm. Pure Appl. Math. 22 (1969), 737–787. | MR | Zbl
[11] P. Lelong and L. Gruman, Entire functions of several complex variables, Springer Verlag, Berlin, 1986. | MR | Zbl
[12] G. P. Menzala, T. Schonbek, Scattering frequencies for the wave equation with a potential term, J. Funct. Anal. 55 (1984), 297–322. | MR | Zbl
[13] R. B. Melrose, Polynomial bounds on the number of scattering poles, J. Funct. Anal. 53 (1983), 287–303. | MR | Zbl
[14] R. B. Melrose, Geometric scattering theory, Cambridge University Press, 1995. | MR | Zbl
[15] R. G. Newton, Analytic properties of radial wave functions, J. Math. Phys. 1, no. 4, 319–347 (1960). | MR | Zbl
[16] H. M. Nussenzveig, The poles of the -matrix of a rectangular potential well or barrier, Nuclear Phys. 11 (1959), 499–521.
[17] F. W. J. Olver, Asymptotics and Special Functions, Academic Press, San Deigo, 1974. | MR | Zbl
[18] F. W. J. Olver, The asymptotic solution of linear differential equations of the second order for large values of a parameter, Phil. Trans. Royal Soc. London Ser. A 247, 307–327 (1954). | MR | Zbl
[19] F. W. J. Olver, The asymptotic expansion of Bessel functions of large order, Phil. Trans. Royal Soc. London ser. A 247, 328–368 (1954). | MR | Zbl
[20] T. Ransford, Potential theory in the complex plane, Cambridge University Press, Cambridge, 1995. | MR | Zbl
[21] T. Regge, Analytic properties of the scattering matrix, Il Nuovo Cimento 8 (1958), no. 10, 671–679. | MR | Zbl
[22] A. Sá Barreto, Remarks on the distribution of resonances in odd dimensional Euclidean scattering, Asymptot. Anal. 27 (2001), no. 2, 161–170. | MR | Zbl
[23] A. Sá Barreto, Lower bounds for the number of resonances in even dimensional potential scattering, J. Funct. Anal. 169 (1999), 314–323. | MR | Zbl
[24] A. Sá Barreto, S.-H. Tang, Existence of resonances in even dimensional potential scattering, Commun. Part. Diff. Eqns. 25 (2000), no. 5-6, 1143–1151. | MR | Zbl
[25] A. Sá Barreto, M. Zworski, Existence of resonances in three dimensions, Comm. Math. Phys. 173 (1995), no. 2, 401–415. | MR | Zbl
[26] A. Sá Barreto, M. Zworski, Existence of resonances in potential scattering, Comm. Pure Appl. Math. 49 (1996), no. 12, 1271–1280. | MR | Zbl
[27] N. Shenk, D. Thoe, Resonant states and poles of the scattering matrix for perturbations of , J. Math. Anal. Appl. 37 (1972), 467–491. | MR | Zbl
[28] B. Simon, Resonances in one dimension and Fredholm determinants, J. Funct. Anal. 178 (2000), no. 2, 396–420. | MR | Zbl
[29] B. Simon, Trace Ideals and their Applications, London Mathematical Society Lecture Note Series 35, Cambridge University Press, 1979; second edition, American Mathematical Society, Providence RI, 2005. | MR | Zbl
[30] B. Simon, Operators with singular continuous spectrum: I. general operators, Ann. Math. 141 (1995), 131–145. | MR | Zbl
[31] J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J. 60 (1990), no. 1, 1–57. | MR | Zbl
[32] J. Sjöstrand, M. Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4(1991), no. 4, 729–769. | MR | Zbl
[33] P. Stefanov, Sharp bounds on the number of the scattering poles, J. Func. Anal., 231 (1) (2006), 111–142. | MR | Zbl
[34] A. Vasy, Scattering poles for negative potentials, Comm. Partial Differential Equations 22 (1997), no. 1-2, 185–194 | MR | Zbl
[35] G. Vodev, Sharp polynomial bounds on the number of scattering poles for perturbations of the Laplacian, Commun. Math. Phys. 146 (1992), 39–49. | MR | Zbl
[36] G. Vodev, Sharp bounds on the number of scattering poles in even-dimensional spaces, Duke Math. J. 74 (1) (1994), 1–17. | MR | Zbl
[37] G. Vodev, Sharp bounds on the number of scattering poles in the two-dimensional case, Math. Nachr. 170 (1994), 287–297. | MR | Zbl
[38] G. Vodev, Resonances in Euclidean scattering, Cubo Matemática Educacional 3 No. 1, Enero 2001, 319–360. | Zbl
[39] G. N. Watson, Treatise on the theory of Bessel functions, Cambridge University Press, 1966. | Zbl
[40] D. Yafaev, Mathematical scattering theory. General theory, translated from the Russian by J. R. Schulenberger, Translations of Mathematical Monographs, 105, American Mathematical Society, Providence, RI, 1992 | MR | Zbl
[41] M. Zworski, Sharp polynomial poles on the number of scattering poles, Duke Math. J. 59 (1989), 311–323. | MR | Zbl
[42] M. Zworski, Distribution of poles for scattering on the real line, J. Funct. Anal. 73 (1987), 277–296. | MR | Zbl
[43] M. Zworski, Sharp polynomial bounds on the number of scattering poles of radial potentials, J. Funct. Anal. 82 (1989), 370–403. | MR | Zbl
[44] M. Zworski, Poisson formulae for resonances, Séminaire sur les Equations aux Dérivées Partielles, 1996–1997, Exp. No. XIII, 14 pp., Ecole Polytech., Palaiseau, 1997 Seminaire Ecole Polytechnique. | Numdam | MR
[45] M. Zworski, Counting scattering poles, In: Spectral and scattering theory (Sanda, 1992), 301–331, Lectures in Pure and Appl. Math. 161, New York: Dekker, 1994. | MR | Zbl
Cité par Sources :