Uniform Estimates in Homogenization: Compactness Methods and Applications
Journées équations aux dérivées partielles (2014), article no. 7, 25 p.

The purpose of this note is to explain how to use compactness to get uniform estimates in the homogenization of elliptic systems with or without oscillating boundary. Along with new results in this direction, we highlight some important applications to pointwise estimates of Green and Poisson kernels, to the homogenization of boundary layer systems and to the boundary control of composite materials.

DOI : 10.5802/jedp.110
Mots clés : Homogenization, compactness methods, boundary layers, potential theory, Green kernel, Poisson kernel, control of distributed systems
Prange, Christophe 1

1 Department of Mathematics The University of Chicago Eckhart Hall 325 5734 S. University Avenue Chicago, Illinois 60637, USA
@article{JEDP_2014____A7_0,
     author = {Prange, Christophe},
     title = {Uniform {Estimates} in {Homogenization:} {Compactness} {Methods} and {Applications}},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {7},
     pages = {1--25},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2014},
     doi = {10.5802/jedp.110},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jedp.110/}
}
TY  - JOUR
AU  - Prange, Christophe
TI  - Uniform Estimates in Homogenization: Compactness Methods and Applications
JO  - Journées équations aux dérivées partielles
PY  - 2014
SP  - 1
EP  - 25
PB  - Groupement de recherche 2434 du CNRS
UR  - http://www.numdam.org/articles/10.5802/jedp.110/
DO  - 10.5802/jedp.110
LA  - en
ID  - JEDP_2014____A7_0
ER  - 
%0 Journal Article
%A Prange, Christophe
%T Uniform Estimates in Homogenization: Compactness Methods and Applications
%J Journées équations aux dérivées partielles
%D 2014
%P 1-25
%I Groupement de recherche 2434 du CNRS
%U http://www.numdam.org/articles/10.5802/jedp.110/
%R 10.5802/jedp.110
%G en
%F JEDP_2014____A7_0
Prange, Christophe. Uniform Estimates in Homogenization: Compactness Methods and Applications. Journées équations aux dérivées partielles (2014), article  no. 7, 25 p. doi : 10.5802/jedp.110. http://www.numdam.org/articles/10.5802/jedp.110/

[1] Almgren, F. J. Jr. Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. of Math. (2), Volume 87 (1968), pp. 321-391 | MR | Zbl

[2] Armstrong, S. N.; Shen, Z. Lipschitz estimates in almost-periodic homogenization, ArXiv e-prints (2014)

[3] Armstrong, S. N.; Smart, C. K. Quantitative stochastic homogenization of convex integral functionals, ArXiv e-prints (2014)

[4] Avellaneda, M.; Lin, F.-H. Compactness methods in the theory of homogenization, Comm. Pure Appl. Math, Volume 40 (1987) no. 6, pp. 803-847 | MR | Zbl

[5] Avellaneda, M.; Lin, F.-H. Counterexamples related to high-frequency oscillation of Poisson’s kernel, Appl. Math. Optim., Volume 15 (1987) no. 2, pp. 109-119 | MR | Zbl

[6] Avellaneda, M.; Lin, F.-H. Homogenization of elliptic problems with L p boundary data, Appl. Math. Optim., Volume 15 (1987) no. 2, pp. 93-107 | MR | Zbl

[7] Avellaneda, M.; Lin, F.-H. Compactness methods in the theory of homogenization. II. Equations in nondivergence form, Comm. Pure Appl. Math., Volume 42 (1989) no. 2, pp. 139-172 | MR | Zbl

[8] Avellaneda, M.; Lin, F.-H. Homogenization of Poisson’s kernel and applications to boundary control, J. Math. Pures Appl. (9), Volume 68 (1989) no. 1, pp. 1-29 | MR | Zbl

[9] Avellaneda, M.; Lin, F.-H. L p bounds on singular integrals in homogenization, Comm. Pure Appl. Math., Volume 44 (1991) no. 8-9, pp. 897-910 | MR | Zbl

[10] Bensoussan, A.; Lions, J. L.; Papanicolaou, G. Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, 5, North-Holland Publishing Co., Amsterdam, 1978 | MR | Zbl

[11] Bombieri, E. Regularity theory for almost minimal currents, Arch. Rational Mech. Anal., Volume 78 (1982) no. 2, pp. 99-130 | MR | Zbl

[12] Caffarelli, L. A. Compactness methods in free boundary problems, Comm. Partial Differential Equations, Volume 5 (1980) no. 4, pp. 427-448 | MR | Zbl

[13] Choi, S.; Kim, I. C. Homogenization for nonlinear PDEs in general domains with oscillatory Neumann boundary data, J. Math. Pures Appl. (9), Volume 102 (2014) no. 2, pp. 419-448 | MR

[14] Cioranescu, D.; Donato, P. An Introduction to Homogenization, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, 1999 | MR | Zbl

[15] De Giorgi, E. Frontiere orientate di misura minima, Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960-61, Editrice Tecnico Scientifica, Pisa, 1961, pp. 57 | MR

[16] Evans, L. C. Quasiconvexity and partial regularity in the calculus of variations, Arch. Rational Mech. Anal., Volume 95 (1986) no. 3, pp. 227-252 | MR | Zbl

[17] Feldman, W. M. Homogenization of the oscillating Dirichlet boundary condition in general domains, J. Math. Pures Appl. (9), Volume 101 (2014) no. 5, pp. 599-622 | MR | Zbl

[18] Feldman, W. M.; Kim, I.; Souganidis, P. E. Quantitative Homogenization of Elliptic PDE with Random Oscillatory Boundary Data, ArXiv e-prints (2014)

[19] Geng, J.; Shen, Z. Uniform Regularity Estimates in Parabolic Homogenization, ArXiv e-prints (2013)

[20] Geng, J.; Shen, Z.; Song, L. Uniform W 1,p estimates for systems of linear elasticity in a periodic medium, J. Funct. Anal., Volume 262 (2012) no. 4, pp. 1742-1758 | MR | Zbl

[21] Gérard-Varet, D. The Navier wall law at a boundary with random roughness, Comm. Math. Phys., Volume 286 (2009) no. 1, pp. 81-110 | MR | Zbl

[22] Gérard-Varet, D.; Masmoudi, N. Relevance of the slip condition for fluid flows near an irregular boundary, Comm. Math. Phys., Volume 295 (2010) no. 1, pp. 99-137 | MR | Zbl

[23] Gérard-Varet, D.; Masmoudi, N. Homogenization in polygonal domains, J. Eur. Math. Soc., Volume 13 (2011), pp. 1477-1503 | MR | Zbl

[24] Gérard-Varet, D.; Masmoudi, N. Homogenization and boundary layers, Acta Math., Volume 209 (2012) no. 1, pp. 133-178 | MR | Zbl

[25] Giaquinta, M. Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies, 105, Princeton University Press, Princeton, NJ, 1983 | MR | Zbl

[26] Gloria, A.; Neukamm, S.; Otto, F. A regularity theory for random elliptic operators, ArXiv e-prints (2014)

[27] Kenig, C. Weighted H p spaces on Lipschitz domains, Amer. J. Math., Volume 102 (1980) no. 1, pp. 129-163 | MR | Zbl

[28] Kenig, C.; Lin, F.-H.; Shen, Z. Homogenization of elliptic systems with Neumann boundary conditions, J. Amer. Math. Soc., Volume 26 (2013) no. 4, pp. 901-937 | MR | Zbl

[29] Kenig, C.; Lin, F.-H; Shen, Z. Homogenization of Green and Neumann Functions (2014) (to appear in Communications in Pure and Applied Mathematics)

[30] Kenig, C.; Prange, C. Uniform Lipschitz Estimates in Bumpy Half-Spaces, ArXiv e-prints (2014)

[31] Kenig, C.; Shen, Z. Homogenization of elliptic boundary value problems in Lipschitz domains, Math. Ann., Volume 350 (2011) no. 4, pp. 867-917 | MR | Zbl

[32] Kenig, C.; Shen, Zhongwei Layer potential methods for elliptic homogenization problems, Comm. Pure Appl. Math., Volume 64 (2011) no. 1, pp. 1-44 | MR | Zbl

[33] Lions, J. L. Asymptotic problems in distributed systems (1985) (IMA Preprint Series)

[34] Moskow, S.; Vogelius, M. First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof, Proc. Roy. Soc. Edinburgh Sect. A, Volume 127 (1997) no. 6, pp. 1263-1299 | MR | Zbl

[35] Murat, F.; Tartar, L. H-convergence, Topics in the mathematical modelling of composite materials (Progr. Nonlinear Differential Equations Appl.), Volume 31, Birkhäuser Boston, Boston, MA, 1997, pp. 21-43 | MR | Zbl

[36] Prange, C. Asymptotic analysis of boundary layer correctors in periodic homogenization, SIAM J. Math. Anal., Volume 45 (2013) no. 1, pp. 345-387 | MR | Zbl

[37] Shen, Z. W 1,p estimates for elliptic homogenization problems in nonsmooth domains, Indiana Univ. Math. J., Volume 57 (2008) no. 5, pp. 2283-2298 | MR | Zbl

[38] Shen, Z. Convergence Rates and Hölder Estimates in Almost-Periodic Homogenization of Elliptic Systems, ArXiv e-prints (2014)

Cité par Sources :