Analyse numérique
A transform based local RBF method for 2D linear PDE with Caputo–Fabrizio derivative
Comptes Rendus. Mathématique, Tome 358 (2020) no. 7, pp. 831-842.

The present work aims to approximate the solution of linear time fractional PDE with Caputo Fabrizio derivative. For the said purpose Laplace transform with local radial basis functions is used. The Laplace transform is applied to obtain the corresponding time independent equation in Laplace space and then the local RBFs are employed for spatial discretization. The solution is then represented as a contour integral in the complex space, which is approximated by trapezoidal rule with high accuracy. The application of Laplace transform avoids the time stepping procedure which commonly encounters the time instability issues. The convergence of the method is discussed also we have derived the bounds for the stability constant of the differentiation matrix of our proposed numerical scheme. The efficiency of the method is demonstrated with the help of numerical examples. For our numerical experiments we have selected three different domains, in the first test case the square domain is selected, for the second test the circular domain is considered, while for third case the L-shape domain is selected.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.98
Kamran 1 ; Ali, Amjad 2 ; Gómez-Aguilar, José Francisco 3

1 Department of Mathematics, Islamia College Peshawar, Khyber Pakhtoon Khwa, Pakistan.
2 Department of Basic Sciences and Islamiat, University of Engineering and Technology Peshawar,Khyber Pakhtoon Khwa, Pakistan.
3 CONACyT-Tecnológico Nacional de México/CENIDET.Interior Internado Palmira S/N, Col. Palmira, C.P.62490, Cuernavaca, Morelos, México.
@article{CRMATH_2020__358_7_831_0,
     author = {Kamran and Ali, Amjad and G\'omez-Aguilar, Jos\'e Francisco},
     title = {A transform based local {RBF} method for {2D} linear {PDE} with {Caputo{\textendash}Fabrizio} derivative},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {831--842},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {7},
     year = {2020},
     doi = {10.5802/crmath.98},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.98/}
}
TY  - JOUR
AU  - Kamran
AU  - Ali, Amjad
AU  - Gómez-Aguilar, José Francisco
TI  - A transform based local RBF method for 2D linear PDE with Caputo–Fabrizio derivative
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 831
EP  - 842
VL  - 358
IS  - 7
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.98/
DO  - 10.5802/crmath.98
LA  - en
ID  - CRMATH_2020__358_7_831_0
ER  - 
%0 Journal Article
%A Kamran
%A Ali, Amjad
%A Gómez-Aguilar, José Francisco
%T A transform based local RBF method for 2D linear PDE with Caputo–Fabrizio derivative
%J Comptes Rendus. Mathématique
%D 2020
%P 831-842
%V 358
%N 7
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.98/
%R 10.5802/crmath.98
%G en
%F CRMATH_2020__358_7_831_0
Kamran; Ali, Amjad; Gómez-Aguilar, José Francisco. A transform based local RBF method for 2D linear PDE with Caputo–Fabrizio derivative. Comptes Rendus. Mathématique, Tome 358 (2020) no. 7, pp. 831-842. doi : 10.5802/crmath.98. http://www.numdam.org/articles/10.5802/crmath.98/

[1] Algahtani, Obaid Jefain Julaighim Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model, Chaos Solitons Fractals, Volume 89 (2016), pp. 552-559 | DOI | MR | Zbl

[2] Arshad, Sadia; Defterli, Ozlem; Baleanu, Dumitru A second order accurate approximation for fractional derivatives with singular and non-singular kernel applied to a HIV model, Appl. Math. Comput. (2020), 125061, p. 18 | MR | Zbl

[3] Atangana, Abdon On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation, Appl. Math. Comput., Volume 273 (2016), pp. 948-956 | MR | Zbl

[4] Atangana, Abdon; Alkahtani, Badr Saad T. New model of groundwater flowing within a confine aquifer: application of Caputo-Fabrizio derivative, Arab. J. Geosci., Volume 9 (2016), p. 8 | DOI

[5] Atangana, Abdon; Alqahtani, Rubayyi T. Numerical approximation of the space-time Caputo–Fabrizio fractional derivative and application to groundwater pollution equation, Adv. Difference Equ. (2016), 156 | DOI | MR | Zbl

[6] Caputo, Michele; Fabrizio, Mauro A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl, Volume 1 (2015) no. 2, pp. 73-85

[7] Cattani, Carlo; Srivastava, Hari M.; Yang, Xiao Jun Fractional dynamics, De Gruyter, 2015 | Zbl

[8] Doungmo Goufo, Emile F. Application of the Caputo–Fabrizio fractional derivative without singular kernel to Korteweg–de Vries–Bergers equation, Math. Model. Anal., Volume 21 (2016) no. 2, pp. 188-198 | DOI | MR

[9] Doungmo Goufo, Emile F.; Pene, Morgan K.; Mwambakana, Jeanine N. Duplication in a model of rock fracture with fractional derivative without singular kernel, Open Math., Volume 13 (2015) no. 1, pp. 839-846 | MR | Zbl

[10] Feulefack, Pierre A.; Djida, Jean Daniel; Atangana, Abdon A new model of groundwater flow within an unconfined aquifer: Application of Caputo–Fabrizio fractional derivative, Discrete Contin. Dyn. Syst., Volume 24 (2019) no. 7, pp. 3227-3247 | MR | Zbl

[11] Gómez-Aguilar, José F.; Yépez-Martínez, Huitzilin; Calderón-Ramón, Celia; Cruz-Orduña, Ines; Escobar-Jiménez, Ricardo F.; Olivares-Peregrino, Victor H. Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel, Entropy, Volume 17 (2015) no. 9, pp. 6289-6303 | DOI | MR | Zbl

[12] Jaradat, Imad; Alquran, Marwan; Momani, Shaher; Baleanu, Dumitru Numerical schemes for studying biomathematics model inherited with memory-time and delay-time (2020) (Article in press to appear in Alexandria Engineering Journal, https://www.sciencedirect.com/science/article/pii/S1110016820301472)

[13] Kamran; Uddin, Marjan; Ali, Amjad On the approximation of time-fractional telegraph equations using localized kernel-based method, Adv. Differ. Equ. (2018), 305 | DOI | MR | Zbl

[14] Kilbas, Anatolii A.; Srivastava, Hari M.; Trujillo, Juan J. Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier, 2006 | MR | Zbl

[15] McLean, William; Thomée, Vidar Numerical solution via Laplace transforms of a fractional order evolution equation, J. Integral Equations Appl., Volume 22 (2010) no. 1, pp. 57-94 | DOI | MR | Zbl

[16] Mirza, Itrat A.; Vieru, Dumitru Fundamental solutions to advection–diffusion equation with time-fractional Caputo–Fabrizio derivative, Comput. Math. Appl., Volume 73 (2017) no. 1, pp. 1-10 | DOI | MR | Zbl

[17] Morales-Delgado, Victor F.; Gómez-Aguilar, José F.; Yépez-Martínez, Huitzilin; Baleanu, Dumitru; Escobar-Jiménez, Ricardo F.; Olivares-Peregrino, Victor H. Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Adv. Difference Equ., Volume 2016 (2016) no. 1, 164 | MR | Zbl

[18] Oldham, Keith B.; Spanier, Jerome The fractional calculus theory and applications of differentiation and integration to arbitrary order, Mathematics in Science and Engineering, 111, Academic Press Inc., 1974 | Zbl

[19] Owolabi, Kolade M.; Atangana, Abdon Analysis and application of new fractional Adams–Bashforth scheme with Caputo–Fabrizio derivative, Chaos Solitons Fractals, Volume 105 (2017), pp. 111-119 | DOI | MR | Zbl

[20] Owolabi, Kolade M.; Atangana, Abdon Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense, Chaos Solitons Fractals, Volume 99 (2017), pp. 171-179 | DOI | MR | Zbl

[21] Podlubny, Igor Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198, Academic Press, 1999 | Zbl

[22] Samko, Stefan G.; Kilbas, Anatolii A.; Marichev, Oleg I. Fractional integrals and derivatives. Theory and applications, Gordon and Breach Science Publishers, 1993 | Zbl

[23] Schaback, Robert Error estimates and condition numbers for radial basis function interpolation, Adv. Comput. Math., Volume 3 (1995) no. 3, pp. 251-264 | DOI | MR | Zbl

[24] Uddin, Marjan; Kamran; Ali, Amjad A localized transform-based meshless method for solving time fractional wave-diffusion equation, Eng. Anal. Bound. Elem., Volume 92 (2018), pp. 108-113 | DOI | MR | Zbl

[25] Zhou, Hong-Wei; Yang, Shuai; Zhang, Shu Qin Modeling non-Darcian flow and solute transport in porous media with the Caputo–Fabrizio derivative, Appl. Math. Modelling, Volume 68 (2019), pp. 603-615 | DOI | MR | Zbl

Cité par Sources :