Équations aux dérivées partielles, Mécanique des fluides
Equilibrium configuration of a rectangular obstacle immersed in a channel flow
Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 887-896.

Fluid flows around an obstacle generate vortices which, in turn, generate lift forces on the obstacle. Therefore, even in a perfectly symmetric framework equilibrium positions may be asymmetric. We show that this is not the case for a Poiseuille flow in an unbounded 2D channel, at least for small Reynolds number and flow rate. We consider both the cases of vertically moving obstacles and obstacles rotating around a fixed pin.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.95
Classification : 35Q30, 35A02, 46E35, 31A15
Bonheure, Denis 1 ; Galdi, Giovanni P. 2 ; Gazzola, Filippo 3

1 Département de Mathématique – Université Libre de Bruxelles, Belgium
2 Department of Mechanical Engineering – University of Pittsburgh, USA
3 Dipartimento di Matematica – Politecnico di Milano, Italy
@article{CRMATH_2020__358_8_887_0,
     author = {Bonheure, Denis and Galdi, Giovanni P. and Gazzola, Filippo},
     title = {Equilibrium configuration of a rectangular obstacle immersed in a channel flow},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {887--896},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {8},
     year = {2020},
     doi = {10.5802/crmath.95},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.95/}
}
TY  - JOUR
AU  - Bonheure, Denis
AU  - Galdi, Giovanni P.
AU  - Gazzola, Filippo
TI  - Equilibrium configuration of a rectangular obstacle immersed in a channel flow
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 887
EP  - 896
VL  - 358
IS  - 8
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.95/
DO  - 10.5802/crmath.95
LA  - en
ID  - CRMATH_2020__358_8_887_0
ER  - 
%0 Journal Article
%A Bonheure, Denis
%A Galdi, Giovanni P.
%A Gazzola, Filippo
%T Equilibrium configuration of a rectangular obstacle immersed in a channel flow
%J Comptes Rendus. Mathématique
%D 2020
%P 887-896
%V 358
%N 8
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.95/
%R 10.5802/crmath.95
%G en
%F CRMATH_2020__358_8_887_0
Bonheure, Denis; Galdi, Giovanni P.; Gazzola, Filippo. Equilibrium configuration of a rectangular obstacle immersed in a channel flow. Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 887-896. doi : 10.5802/crmath.95. http://www.numdam.org/articles/10.5802/crmath.95/

[1] Bello, Juan Antonio; Fernández-Cara, Enrique; Lemoine, Jérôme; Simon, Jacques The differentiability of the drag with respect to the variations of a Lipschitz domain in a Navier-Stokes flow, SIAM J. Control Optimization, Volume 35 (1997) no. 2, pp. 626-640 | DOI | MR | Zbl

[2] Bonheure, Denis; Gazzola, Filippo; Sperone, Gianmarco Eight(y) mathematical questions on fluids and structures, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., Volume 30 (2019) no. 4, pp. 759-815 | DOI | MR | Zbl

[3] Galdi, Giovanni P. An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, Springer, 2011 | Zbl

[4] Galdi, Giovanni P.; Heuveline, Vincent Lift and sedimentation of particles in the flow of a viscoelastic liquid in a channel, Free and moving boundaries (Lecture Notes in Pure and Applied Mathematics), Volume 252, Chapman & Hall/CRC, 2007 | MR | Zbl

[5] Gazzola, Filippo Mathematical models for suspension bridges. Nonlinear structural instability, MS & A Modeling, Simulation and Applications, 15, Springer, 2015 | Zbl

[6] Gazzola, Filippo; Sperone, Gianmarco Steady Navier–Stokes equations in planar domains with obstacle and explicit bounds for unique solvability, Arch. Ration. Mech. Anal., Volume 238 (2020) no. 3, pp. 1283-1347 | DOI | MR | Zbl

[7] Henrot, Antoine; Pierre, Michel Shape Variation and Optimization: A Geometrical Analysis, EMS Tracts in Mathematics, 28, European Mathematical Society, 2018 | Zbl

[8] Ho, B. P.; Leal, L. Gary Inertial migration of rigid spheres in two-dimensional unidirectional flows, J. Fluid Mech., Volume 65 (1974), pp. 365-400 | Zbl

Cité par Sources :