Géométrie birationnelle
A remark on the rank of finite p-groups of birational automorphisms
Comptes Rendus. Mathématique, Tome 358 (2020) no. 7, pp. 827-829.

Dans cette note, nous améliorons un résultat de Prokhorov et Shramov sur le rang des p-sous-groupes finis du groupe des transformations birationnelles d’une variété rationnellement connexe. Des exemples connus montrent que les bornes obtenues sont optimales dans de nombreux cas.

In this note, we improve a result of Prokhorov and Shramov on the rank of finite p-subgroups of the group of birational transformations of a rationally connected variety. Known examples show that the bounds obtained are optimal in many cases.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.93
Xu, Jinsong 1

1 Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool University, No.111, Ren’ai Road, SIP, Suzhou, Jiangsu Province, China
@article{CRMATH_2020__358_7_827_0,
     author = {Xu, Jinsong},
     title = {A remark on the rank of finite $p$-groups of birational automorphisms},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {827--829},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {7},
     year = {2020},
     doi = {10.5802/crmath.93},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.93/}
}
TY  - JOUR
AU  - Xu, Jinsong
TI  - A remark on the rank of finite $p$-groups of birational automorphisms
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 827
EP  - 829
VL  - 358
IS  - 7
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.93/
DO  - 10.5802/crmath.93
LA  - en
ID  - CRMATH_2020__358_7_827_0
ER  - 
%0 Journal Article
%A Xu, Jinsong
%T A remark on the rank of finite $p$-groups of birational automorphisms
%J Comptes Rendus. Mathématique
%D 2020
%P 827-829
%V 358
%N 7
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.93/
%R 10.5802/crmath.93
%G en
%F CRMATH_2020__358_7_827_0
Xu, Jinsong. A remark on the rank of finite $p$-groups of birational automorphisms. Comptes Rendus. Mathématique, Tome 358 (2020) no. 7, pp. 827-829. doi : 10.5802/crmath.93. http://www.numdam.org/articles/10.5802/crmath.93/

[1] Beauville, Arnaud p-Elementary subgroups of the Cremona group, J. Algebra, Volume 314 (2007) no. 2, pp. 553-564 | DOI | MR | Zbl

[2] Birkar, Caucher Singularities of linear systems and boundedness of Fano varieties (2016) (https://arxiv.org/abs/1609.05543)

[3] Haution, Olivier Fixed point theorems involving numerical invariants, Compos. Math., Volume 155 (2019) no. 2, pp. 260-288 | DOI | MR | Zbl

[4] Kollár, János Rational Curves on Algebraic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 32, Springer, 1995 | Zbl

[5] Kuznetsova, Alexandra Finite 3-subgroups in Cremona group of rank 3 (2020) (https://arxiv.org/abs/2001.01308)

[6] Popov, Vladimir L. Jordan Groups and Automorphism Groups of Algebraic Varieties, Automorphisms in Birational and Affine Geometry. Papers based on the presentations at the conference, Levico Terme, Italy, October 29 – November 3, 2012 (Springer Proceedings in Mathematics & Statistics), Volume 79, Springer (2014), pp. 185-213 | MR | Zbl

[7] Prokhorov, Yuri G. p-elementary subgroups of the Cremona group of rank 3, Classification of algebraic varieties. Based on the conference on classification of varieties, Schiermonnikoog, Netherlands, May 2009 (EMS Series of Congress Reports), European Mathematical Society, 2011, pp. 327-338 | MR | Zbl

[8] Prokhorov, Yuri G. 2-Elementary Subgroups of the Space Cremona Group, Automorphisms in Birational and Affine Geometry. Papers based on the presentations at the conference, Levico Terme, Italy, October 29 – November 3, 2012 (Springer Proceedings in Mathematics & Statistics), Volume 79, Springer (2014), pp. 215-229 | MR | Zbl

[9] Prokhorov, Yuri G.; Shramov, Constantin Jordan property for groups of birational selfmaps, Compos. Math., Volume 150 (2014) no. 12, pp. 2054-2072 | DOI | MR | Zbl

[10] Prokhorov, Yuri G.; Shramov, Constantin Jordan property for Cremona groups, Am. J. Math., Volume 138 (2016) no. 2, pp. 403-418 | DOI | MR | Zbl

[11] Prokhorov, Yuri. G.; Shramov, Constantin Jordan constant for Cremona group of rank 3, Mosc. Math. J., Volume 17 (2017) no. 3, pp. 457-509 | DOI | MR | Zbl

[12] Prokhorov, Yuri. G.; Shramov, Constantin p-subgroups in the space Cremona group, Math. Nachr., Volume 291 (2017) no. 8-9, pp. 1374-1389 | DOI | MR | Zbl

[13] Serre, Jean-Pierre A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field, Mosc. Math. J., Volume 9 (2009) no. 1, pp. 193-208 | MR | Zbl

Cité par Sources :