Dans cette note, nous améliorons un résultat de Prokhorov et Shramov sur le rang des -sous-groupes finis du groupe des transformations birationnelles d’une variété rationnellement connexe. Des exemples connus montrent que les bornes obtenues sont optimales dans de nombreux cas.
In this note, we improve a result of Prokhorov and Shramov on the rank of finite -subgroups of the group of birational transformations of a rationally connected variety. Known examples show that the bounds obtained are optimal in many cases.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_7_827_0, author = {Xu, Jinsong}, title = {A remark on the rank of finite $p$-groups of birational automorphisms}, journal = {Comptes Rendus. Math\'ematique}, pages = {827--829}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {7}, year = {2020}, doi = {10.5802/crmath.93}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.93/} }
TY - JOUR AU - Xu, Jinsong TI - A remark on the rank of finite $p$-groups of birational automorphisms JO - Comptes Rendus. Mathématique PY - 2020 SP - 827 EP - 829 VL - 358 IS - 7 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.93/ DO - 10.5802/crmath.93 LA - en ID - CRMATH_2020__358_7_827_0 ER -
%0 Journal Article %A Xu, Jinsong %T A remark on the rank of finite $p$-groups of birational automorphisms %J Comptes Rendus. Mathématique %D 2020 %P 827-829 %V 358 %N 7 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.93/ %R 10.5802/crmath.93 %G en %F CRMATH_2020__358_7_827_0
Xu, Jinsong. A remark on the rank of finite $p$-groups of birational automorphisms. Comptes Rendus. Mathématique, Tome 358 (2020) no. 7, pp. 827-829. doi : 10.5802/crmath.93. http://www.numdam.org/articles/10.5802/crmath.93/
[1] -Elementary subgroups of the Cremona group, J. Algebra, Volume 314 (2007) no. 2, pp. 553-564 | DOI | MR | Zbl
[2] Singularities of linear systems and boundedness of Fano varieties (2016) (https://arxiv.org/abs/1609.05543)
[3] Fixed point theorems involving numerical invariants, Compos. Math., Volume 155 (2019) no. 2, pp. 260-288 | DOI | MR | Zbl
[4] Rational Curves on Algebraic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 32, Springer, 1995 | Zbl
[5] Finite 3-subgroups in Cremona group of rank 3 (2020) (https://arxiv.org/abs/2001.01308)
[6] Jordan Groups and Automorphism Groups of Algebraic Varieties, Automorphisms in Birational and Affine Geometry. Papers based on the presentations at the conference, Levico Terme, Italy, October 29 – November 3, 2012 (Springer Proceedings in Mathematics & Statistics), Volume 79, Springer (2014), pp. 185-213 | MR | Zbl
[7] -elementary subgroups of the Cremona group of rank , Classification of algebraic varieties. Based on the conference on classification of varieties, Schiermonnikoog, Netherlands, May 2009 (EMS Series of Congress Reports), European Mathematical Society, 2011, pp. 327-338 | MR | Zbl
[8] -Elementary Subgroups of the Space Cremona Group, Automorphisms in Birational and Affine Geometry. Papers based on the presentations at the conference, Levico Terme, Italy, October 29 – November 3, 2012 (Springer Proceedings in Mathematics & Statistics), Volume 79, Springer (2014), pp. 215-229 | MR | Zbl
[9] Jordan property for groups of birational selfmaps, Compos. Math., Volume 150 (2014) no. 12, pp. 2054-2072 | DOI | MR | Zbl
[10] Jordan property for Cremona groups, Am. J. Math., Volume 138 (2016) no. 2, pp. 403-418 | DOI | MR | Zbl
[11] Jordan constant for Cremona group of rank , Mosc. Math. J., Volume 17 (2017) no. 3, pp. 457-509 | DOI | MR | Zbl
[12] -subgroups in the space Cremona group, Math. Nachr., Volume 291 (2017) no. 8-9, pp. 1374-1389 | DOI | MR | Zbl
[13] A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank over an arbitrary field, Mosc. Math. J., Volume 9 (2009) no. 1, pp. 193-208 | MR | Zbl
Cité par Sources :