Équations aux dérivées partielles elliptiques
A Liouville theorem for the fractional Ginzburg–Landau equation
Comptes Rendus. Mathématique, Tome 358 (2020) no. 6, pp. 727-731.

In this paper, we are concerned with a Liouville-type result of the nonlinear integral equation

u(x)= n u(1-|u| 2 ) |x-y| n-α dy,

where u: n k with k1 and 1<α<n/2. We prove that uL 2 ( n )u0 on n , as long as u is a bounded and differentiable solution.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.91
Classification : 45G05, 45E10, 35Q56, 35R11
Li, Yayun 1 ; Chen, Qinghua 2 ; Lei, Yutian 2

1 School of Applied Mathematics, Nanjing University of Finance & Economics, Nanjing, 210023, China
2 Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China
@article{CRMATH_2020__358_6_727_0,
     author = {Li, Yayun and Chen, Qinghua and Lei, Yutian},
     title = {A {Liouville} theorem for the fractional {Ginzburg{\textendash}Landau} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {727--731},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {6},
     year = {2020},
     doi = {10.5802/crmath.91},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.91/}
}
TY  - JOUR
AU  - Li, Yayun
AU  - Chen, Qinghua
AU  - Lei, Yutian
TI  - A Liouville theorem for the fractional Ginzburg–Landau equation
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 727
EP  - 731
VL  - 358
IS  - 6
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.91/
DO  - 10.5802/crmath.91
LA  - en
ID  - CRMATH_2020__358_6_727_0
ER  - 
%0 Journal Article
%A Li, Yayun
%A Chen, Qinghua
%A Lei, Yutian
%T A Liouville theorem for the fractional Ginzburg–Landau equation
%J Comptes Rendus. Mathématique
%D 2020
%P 727-731
%V 358
%N 6
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.91/
%R 10.5802/crmath.91
%G en
%F CRMATH_2020__358_6_727_0
Li, Yayun; Chen, Qinghua; Lei, Yutian. A Liouville theorem for the fractional Ginzburg–Landau equation. Comptes Rendus. Mathématique, Tome 358 (2020) no. 6, pp. 727-731. doi : 10.5802/crmath.91. http://www.numdam.org/articles/10.5802/crmath.91/

[1] Brezis, Haïm Comments on two notes by L. Ma and X. Xu, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 5-6, pp. 269-271 | DOI | Zbl

[2] Brézis, Haïm; Merle, Frank; Rivière, Tristan Quantization effects for -Δu=u(1-|u| 2 ) in 2 , Arch. Ration. Mech. Anal., Volume 126 (1994) no. 1, pp. 35-58 | DOI | Zbl

[3] Caristi, Gabriella; D’Ambrosio, Lorenzo; Mitidieri, Enzo Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., Volume 76 (2008), pp. 27-67 | DOI | MR | Zbl

[4] Hervé, Rose-Marie; Hervé, Michel Quelques proprietes des solutions de l’equation de Ginzburg-Landau sur un ouvert de 2 , Potential Anal., Volume 5 (1996) no. 6, pp. 591-609 | DOI | Zbl

[5] Lei, Yutian; Li, Congming Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., Volume 36 (2016) no. 6, pp. 3277-3315 | MR | Zbl

[6] Ma, Li Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg-Landau equation, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 17-18, pp. 993-996 | MR | Zbl

[7] Ma, Li Boundedness of solutions to Ginzburg-Landau fractional Laplacian equation, Int. J. Math., Volume 27 (2016) no. 5, 1650048, 6 pages | MR | Zbl

[8] Millot, Vincent; Sire, Yannick On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres, Arch. Ration. Mech. Anal., Volume 215 (2015) no. 1, pp. 125-210 | DOI | MR | Zbl

[9] Milovanov, Alexander V.; Rasmussen, Jens Juul Fractional generalization of the Ginzburg-Landau equation: an unconventional approach to critical phenomena in complex media, Phys. Lett., A, Volume 337 (2005) no. 1-2, pp. 75-80 | DOI | Zbl

[10] Stein, Elias M. Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton University Press, 1970 | MR | Zbl

[11] Tarasov, Vasily E.; Zaslavsky, George M. Fractional Ginzburg–Landau equations for fractal media, Physica A, Volume 354 (2005), pp. 249-261 | DOI

[12] Xu, Xingwang Uniqueness theorem for integral equations and its application, J. Funct. Anal., Volume 247 (2007) no. 1, pp. 95-109 | MR | Zbl

Cité par Sources :