In this paper, we are concerned with a Liouville-type result of the nonlinear integral equation
where with and . We prove that on , as long as is a bounded and differentiable solution.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_6_727_0, author = {Li, Yayun and Chen, Qinghua and Lei, Yutian}, title = {A {Liouville} theorem for the fractional {Ginzburg{\textendash}Landau} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {727--731}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {6}, year = {2020}, doi = {10.5802/crmath.91}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.91/} }
TY - JOUR AU - Li, Yayun AU - Chen, Qinghua AU - Lei, Yutian TI - A Liouville theorem for the fractional Ginzburg–Landau equation JO - Comptes Rendus. Mathématique PY - 2020 SP - 727 EP - 731 VL - 358 IS - 6 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.91/ DO - 10.5802/crmath.91 LA - en ID - CRMATH_2020__358_6_727_0 ER -
%0 Journal Article %A Li, Yayun %A Chen, Qinghua %A Lei, Yutian %T A Liouville theorem for the fractional Ginzburg–Landau equation %J Comptes Rendus. Mathématique %D 2020 %P 727-731 %V 358 %N 6 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.91/ %R 10.5802/crmath.91 %G en %F CRMATH_2020__358_6_727_0
Li, Yayun; Chen, Qinghua; Lei, Yutian. A Liouville theorem for the fractional Ginzburg–Landau equation. Comptes Rendus. Mathématique, Tome 358 (2020) no. 6, pp. 727-731. doi : 10.5802/crmath.91. http://www.numdam.org/articles/10.5802/crmath.91/
[1] Comments on two notes by L. Ma and X. Xu, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 5-6, pp. 269-271 | DOI | Zbl
[2] Quantization effects for in , Arch. Ration. Mech. Anal., Volume 126 (1994) no. 1, pp. 35-58 | DOI | Zbl
[3] Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., Volume 76 (2008), pp. 27-67 | DOI | MR | Zbl
[4] Quelques proprietes des solutions de l’equation de Ginzburg-Landau sur un ouvert de , Potential Anal., Volume 5 (1996) no. 6, pp. 591-609 | DOI | Zbl
[5] Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., Volume 36 (2016) no. 6, pp. 3277-3315 | MR | Zbl
[6] Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg-Landau equation, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 17-18, pp. 993-996 | MR | Zbl
[7] Boundedness of solutions to Ginzburg-Landau fractional Laplacian equation, Int. J. Math., Volume 27 (2016) no. 5, 1650048, 6 pages | MR | Zbl
[8] On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres, Arch. Ration. Mech. Anal., Volume 215 (2015) no. 1, pp. 125-210 | DOI | MR | Zbl
[9] Fractional generalization of the Ginzburg-Landau equation: an unconventional approach to critical phenomena in complex media, Phys. Lett., A, Volume 337 (2005) no. 1-2, pp. 75-80 | DOI | Zbl
[10] Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton University Press, 1970 | MR | Zbl
[11] Fractional Ginzburg–Landau equations for fractal media, Physica A, Volume 354 (2005), pp. 249-261 | DOI
[12] Uniqueness theorem for integral equations and its application, J. Funct. Anal., Volume 247 (2007) no. 1, pp. 95-109 | MR | Zbl
Cité par Sources :