Nous fournissons une preuve courte du résultat connu suivant : l’espace de Sobolev associé à l’espace euclidien muni de sa distance euclidienne et d’une mesure arbitraire de Radon, est un espace d’Hilbert. Notre nouvelle approche repose sur des propriétés du fibré de décomposabilité introduit par Alberti et Marchese. En conséquence de nos arguments, nous prouvons aussi que si la norme de Sobolev est fermable dans les fonctions lisses à support compact, la mesure de référence est absolument continue par rapport à la mesure de Lebesgue.
We provide a quick proof of the following known result: the Sobolev space associated with the Euclidean space, endowed with the Euclidean distance and an arbitrary Radon measure, is Hilbert. Our new approach relies upon the properties of the Alberti–Marchese decomposability bundle. As a consequence of our arguments, we also prove that if the Sobolev norm is closable on compactly-supported smooth functions, then the reference measure is absolutely continuous with respect to the Lebesgue measure.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_7_817_0, author = {Di Marino, Simone and Lu\v{c}i\'c, Danka and Pasqualetto, Enrico}, title = {A short proof of the infinitesimal {Hilbertianity} of the weighted {Euclidean} space}, journal = {Comptes Rendus. Math\'ematique}, pages = {817--825}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {7}, year = {2020}, doi = {10.5802/crmath.88}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.88/} }
TY - JOUR AU - Di Marino, Simone AU - Lučić, Danka AU - Pasqualetto, Enrico TI - A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space JO - Comptes Rendus. Mathématique PY - 2020 SP - 817 EP - 825 VL - 358 IS - 7 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.88/ DO - 10.5802/crmath.88 LA - en ID - CRMATH_2020__358_7_817_0 ER -
%0 Journal Article %A Di Marino, Simone %A Lučić, Danka %A Pasqualetto, Enrico %T A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space %J Comptes Rendus. Mathématique %D 2020 %P 817-825 %V 358 %N 7 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.88/ %R 10.5802/crmath.88 %G en %F CRMATH_2020__358_7_817_0
Di Marino, Simone; Lučić, Danka; Pasqualetto, Enrico. A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space. Comptes Rendus. Mathématique, Tome 358 (2020) no. 7, pp. 817-825. doi : 10.5802/crmath.88. http://www.numdam.org/articles/10.5802/crmath.88/
[1] On the differentiability of Lipschitz functions with respect to measures in the Euclidean space, Geom. Funct. Anal., Volume 26 (2016) no. 1, pp. 1-66 | DOI | MR | Zbl
[2] Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2008 | Zbl
[3] Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Rev. Mat. Iberoam., Volume 29 (2013) no. 3, pp. 969-996 | DOI | MR | Zbl
[4] Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., Volume 195 (2014) no. 2, pp. 289-391 | DOI | MR | Zbl
[5] Differentiable Measures and the Malliavin Calculus, Mathematical Surveys and Monographs, 164, American Mathematical Society, 2010 | MR | Zbl
[6] Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., Volume 9 (1999) no. 3, pp. 428-517 | DOI | MR | Zbl
[7] Recent advances on BV and Sobolev Spaces in metric measure spaces, Ph. D. Thesis, Scuola Normale Superiore di Pisa (Italy) (2014)
[8] Infinitesimal Hilbertianity of locally -spaces (2018) (https://arxiv.org/abs/1812.02086, submitted)
[9] On the differential structure of metric measure spaces and applications, Memoirs of the American Mathematical Society, 236, American Mathematical Society, 2015, vi+91 pages | MR | Zbl
[10] Behaviour of the reference measure on spaces under charts (2016) (https://arxiv.org/abs/1607.05188, to appear in Commun. Anal. Geom.)
[11] Infinitesimal Hilbertianity of weighted Riemannian manifolds, Can. Math. Bull., Volume 63 (2020) no. 1, pp. 118-140 | DOI | MR | Zbl
[12] On the structure of -free measures and applications, Ann. Math., Volume 184 (2016) no. 3, pp. 1017-1039 | DOI | MR | Zbl
[13] Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoam., Volume 16 (2000) no. 2, pp. 243-279 | DOI | MR | Zbl
Cité par Sources :