Théorie des fonctions et espaces des fonctions
A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space
[Une preuve courte de la Hilbertianité infinitésimale de l’espace euclidien à poids]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 7, pp. 817-825.

Nous fournissons une preuve courte du résultat connu suivant : l’espace de Sobolev associé à l’espace euclidien muni de sa distance euclidienne et d’une mesure arbitraire de Radon, est un espace d’Hilbert. Notre nouvelle approche repose sur des propriétés du fibré de décomposabilité introduit par Alberti et Marchese. En conséquence de nos arguments, nous prouvons aussi que si la norme de Sobolev est fermable dans les fonctions lisses à support compact, la mesure de référence est absolument continue par rapport à la mesure de Lebesgue.

We provide a quick proof of the following known result: the Sobolev space associated with the Euclidean space, endowed with the Euclidean distance and an arbitrary Radon measure, is Hilbert. Our new approach relies upon the properties of the Alberti–Marchese decomposability bundle. As a consequence of our arguments, we also prove that if the Sobolev norm is closable on compactly-supported smooth functions, then the reference measure is absolutely continuous with respect to the Lebesgue measure.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.88
Classification : 53C23, 46E35, 26B05
Di Marino, Simone 1 ; Lučić, Danka 2 ; Pasqualetto, Enrico 2

1 Dipartimento di Matematica (DIMA), Via Dodecaneso 35, 16146 Genova, Università di Genova, Italy
2 Department of Mathematics and Statistics, P.O. Box 35 (MaD), 40014 University of Jyvaskyla, Finland
@article{CRMATH_2020__358_7_817_0,
     author = {Di Marino, Simone and Lu\v{c}i\'c, Danka and Pasqualetto, Enrico},
     title = {A short proof of the infinitesimal {Hilbertianity} of the weighted {Euclidean} space},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {817--825},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {7},
     year = {2020},
     doi = {10.5802/crmath.88},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.88/}
}
TY  - JOUR
AU  - Di Marino, Simone
AU  - Lučić, Danka
AU  - Pasqualetto, Enrico
TI  - A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 817
EP  - 825
VL  - 358
IS  - 7
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.88/
DO  - 10.5802/crmath.88
LA  - en
ID  - CRMATH_2020__358_7_817_0
ER  - 
%0 Journal Article
%A Di Marino, Simone
%A Lučić, Danka
%A Pasqualetto, Enrico
%T A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space
%J Comptes Rendus. Mathématique
%D 2020
%P 817-825
%V 358
%N 7
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.88/
%R 10.5802/crmath.88
%G en
%F CRMATH_2020__358_7_817_0
Di Marino, Simone; Lučić, Danka; Pasqualetto, Enrico. A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space. Comptes Rendus. Mathématique, Tome 358 (2020) no. 7, pp. 817-825. doi : 10.5802/crmath.88. http://www.numdam.org/articles/10.5802/crmath.88/

[1] Alberti, Giovanni; Marchese, Andrea On the differentiability of Lipschitz functions with respect to measures in the Euclidean space, Geom. Funct. Anal., Volume 26 (2016) no. 1, pp. 1-66 | DOI | MR | Zbl

[2] Ambrosio, Luigi; Gigli, Nicola; Savaré, Giuseppe Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2008 | Zbl

[3] Ambrosio, Luigi; Gigli, Nicola; Savaré, Giuseppe Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Rev. Mat. Iberoam., Volume 29 (2013) no. 3, pp. 969-996 | DOI | MR | Zbl

[4] Ambrosio, Luigi; Gigli, Nicola; Savaré, Giuseppe Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., Volume 195 (2014) no. 2, pp. 289-391 | DOI | MR | Zbl

[5] Bogachev, Vladimir I. Differentiable Measures and the Malliavin Calculus, Mathematical Surveys and Monographs, 164, American Mathematical Society, 2010 | MR | Zbl

[6] Cheeger, Jeff Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., Volume 9 (1999) no. 3, pp. 428-517 | DOI | MR | Zbl

[7] Di Marino, Simone Recent advances on BV and Sobolev Spaces in metric measure spaces, Ph. D. Thesis, Scuola Normale Superiore di Pisa (Italy) (2014)

[8] Di Marino, Simone; Gigli, Nicola; Pasqualetto, Enrico; Soultanis, Elefterios Infinitesimal Hilbertianity of locally CAT (κ)-spaces (2018) (https://arxiv.org/abs/1812.02086, submitted)

[9] Gigli, Nicola On the differential structure of metric measure spaces and applications, Memoirs of the American Mathematical Society, 236, American Mathematical Society, 2015, vi+91 pages | MR | Zbl

[10] Gigli, Nicola; Pasqualetto, Enrico Behaviour of the reference measure on RCD spaces under charts (2016) (https://arxiv.org/abs/1607.05188, to appear in Commun. Anal. Geom.)

[11] Lučić, Danka; Pasqualetto, Enrico Infinitesimal Hilbertianity of weighted Riemannian manifolds, Can. Math. Bull., Volume 63 (2020) no. 1, pp. 118-140 | DOI | MR | Zbl

[12] Philippis, Guido De; Rindler, Filip On the structure of 𝒜-free measures and applications, Ann. Math., Volume 184 (2016) no. 3, pp. 1017-1039 | DOI | MR | Zbl

[13] Shanmugalingam, Nageswari Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoam., Volume 16 (2000) no. 2, pp. 243-279 | DOI | MR | Zbl

Cité par Sources :