Analyse sur les espaces métriques
On the Geometric Rigidity interpolation estimate in thin bi-Lipschitz domains
Comptes Rendus. Mathématique, Tome 358 (2020) no. 7, pp. 811-816.

This work is concerned with developing asymptotically sharp geometric rigidity estimates in thin domains. A thin domain Ω in space is roughly speaking a shell with non-constant thickness around a regular enough two dimensional compact surface. We prove a sharp geometric rigidity interpolation inequality that permits one to bound the L p distance of the gradient of a uW 1,p field from any constant proper rotation R, in terms of the average L p distance (nonlinear strain) of the gradient from the rotation group, and the average L p distance of the field itself from the set of rigid motions corresponding to the rotation R. The constants in the estimate are sharp in terms of the domain thickness scaling. If the domain mid-surface has a constant sign Gaussian curvature then the inequality reduces the problem of estimating the gradient u in terms of the nonlinear strain Ω dist p (u(x),SO(3))dx to the easier problem of estimating only the vector field u in terms of the nonlinear strain with no asymptotic loss in the constants. This being said, the new interpolation inequality reduces the problem of proving “any” geometric one well rigidity problem in thin domains to estimating the vector field itself instead of the gradient, thus reducing the complexity of the problem.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.87
Harutyunyan, Davit 1

1 Department of Mathematics, University of California Santa Barbara, USA
@article{CRMATH_2020__358_7_811_0,
     author = {Harutyunyan, Davit},
     title = {On the {Geometric} {Rigidity} interpolation estimate in thin {bi-Lipschitz} domains},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {811--816},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {7},
     year = {2020},
     doi = {10.5802/crmath.87},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.87/}
}
TY  - JOUR
AU  - Harutyunyan, Davit
TI  - On the Geometric Rigidity interpolation estimate in thin bi-Lipschitz domains
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 811
EP  - 816
VL  - 358
IS  - 7
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.87/
DO  - 10.5802/crmath.87
LA  - en
ID  - CRMATH_2020__358_7_811_0
ER  - 
%0 Journal Article
%A Harutyunyan, Davit
%T On the Geometric Rigidity interpolation estimate in thin bi-Lipschitz domains
%J Comptes Rendus. Mathématique
%D 2020
%P 811-816
%V 358
%N 7
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.87/
%R 10.5802/crmath.87
%G en
%F CRMATH_2020__358_7_811_0
Harutyunyan, Davit. On the Geometric Rigidity interpolation estimate in thin bi-Lipschitz domains. Comptes Rendus. Mathématique, Tome 358 (2020) no. 7, pp. 811-816. doi : 10.5802/crmath.87. http://www.numdam.org/articles/10.5802/crmath.87/

[1] Ciarlet, Philippe G. Korn’s inequalities: the linear vs. the nonlinear case, Discrete Contin. Dyn. Syst., Volume 5 (2012) no. 3, pp. 473-483 | DOI | MR | Zbl

[2] Ciarlet, Philippe G.; Mardare, Cristinel Nonlinear Korn inequalities, J. Math. Pures Appl., Volume 104 (2015) no. 6, pp. 1119-1134 | DOI | MR | Zbl

[3] Friesecke, Gero; James, Richard D.; Müller, Stefan A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Commun. Pure Appl. Math., Volume 55 (2002) no. 11, pp. 1461-1506 | DOI | MR | Zbl

[4] Grabovsky, Yury; Harutyunyan, Davit Korn inequalities for shells with zero Gaussian curvature, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 1, pp. 267-282 | DOI | MR | Zbl

[5] Harutyunyan, Davit Gaussian curvature as an identifier of shell rigidity, Arch. Ration. Mech. Anal., Volume 226 (2017) no. 2, pp. 743-766 | DOI | MR | Zbl

[6] Harutyunyan, Davit The Korn interpolation and second inequalities for shells, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 5, pp. 575-580 | DOI | MR | Zbl

[7] Harutyunyan, Davit On the Korn interpolation and second inequalities in thin domains, SIAM J. Math. Anal., Volume 50 (2018) no. 5, pp. 4964-4982 | DOI | MR | Zbl

[8] Tovstik, Petr E.; Smirnov, Andrei L. Asymptotic methods in the buckling theory of elastic shells, Series on Stability, Vibration and Control of Systems, 4, World Scientific, 2001 | MR | Zbl

Cité par Sources :