This work is concerned with developing asymptotically sharp geometric rigidity estimates in thin domains. A thin domain
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_7_811_0, author = {Harutyunyan, Davit}, title = {On the {Geometric} {Rigidity} interpolation estimate in thin {bi-Lipschitz} domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {811--816}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {7}, year = {2020}, doi = {10.5802/crmath.87}, language = {en}, url = {https://www.numdam.org/articles/10.5802/crmath.87/} }
TY - JOUR AU - Harutyunyan, Davit TI - On the Geometric Rigidity interpolation estimate in thin bi-Lipschitz domains JO - Comptes Rendus. Mathématique PY - 2020 SP - 811 EP - 816 VL - 358 IS - 7 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.87/ DO - 10.5802/crmath.87 LA - en ID - CRMATH_2020__358_7_811_0 ER -
%0 Journal Article %A Harutyunyan, Davit %T On the Geometric Rigidity interpolation estimate in thin bi-Lipschitz domains %J Comptes Rendus. Mathématique %D 2020 %P 811-816 %V 358 %N 7 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.87/ %R 10.5802/crmath.87 %G en %F CRMATH_2020__358_7_811_0
Harutyunyan, Davit. On the Geometric Rigidity interpolation estimate in thin bi-Lipschitz domains. Comptes Rendus. Mathématique, Tome 358 (2020) no. 7, pp. 811-816. doi : 10.5802/crmath.87. https://www.numdam.org/articles/10.5802/crmath.87/
[1] Korn’s inequalities: the linear vs. the nonlinear case, Discrete Contin. Dyn. Syst., Volume 5 (2012) no. 3, pp. 473-483 | DOI | MR | Zbl
[2] Nonlinear Korn inequalities, J. Math. Pures Appl., Volume 104 (2015) no. 6, pp. 1119-1134 | DOI | MR | Zbl
[3] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Commun. Pure Appl. Math., Volume 55 (2002) no. 11, pp. 1461-1506 | DOI | MR | Zbl
[4] Korn inequalities for shells with zero Gaussian curvature, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 1, pp. 267-282 | DOI | MR | Zbl
[5] Gaussian curvature as an identifier of shell rigidity, Arch. Ration. Mech. Anal., Volume 226 (2017) no. 2, pp. 743-766 | DOI | MR | Zbl
[6] The Korn interpolation and second inequalities for shells, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 5, pp. 575-580 | DOI | MR | Zbl
[7] On the Korn interpolation and second inequalities in thin domains, SIAM J. Math. Anal., Volume 50 (2018) no. 5, pp. 4964-4982 | DOI | MR | Zbl
[8] Asymptotic methods in the buckling theory of elastic shells, Series on Stability, Vibration and Control of Systems, 4, World Scientific, 2001 | MR | Zbl
Cité par Sources :