Nous disons qu’un groupe algébrique lisse sur un corps est très spécial si pour toute extension de corps , toute -variété homogène sous a un point -rationnel. On sait que tout groupe linéaire résoluble scindé est très spécial. Dans cette note, nous obtenons la réciproque et nous discutons ses relations avec la classification birationnelle des actions de groupes algébriques.
We say that a smooth algebraic group over a field is very special if for any field extension , every -homogeneous -variety has a -rational point. It is known that every split solvable linear algebraic group is very special. In this note, we show that the converse holds, and discuss its relationship with the birational classification of algebraic group actions.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_6_713_0, author = {Brion, Michel and Peyre, Emmanuel}, title = {Very special algebraic groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {713--719}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {6}, year = {2020}, doi = {10.5802/crmath.86}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.86/} }
TY - JOUR AU - Brion, Michel AU - Peyre, Emmanuel TI - Very special algebraic groups JO - Comptes Rendus. Mathématique PY - 2020 SP - 713 EP - 719 VL - 358 IS - 6 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.86/ DO - 10.5802/crmath.86 LA - en ID - CRMATH_2020__358_6_713_0 ER -
Brion, Michel; Peyre, Emmanuel. Very special algebraic groups. Comptes Rendus. Mathématique, Tome 358 (2020) no. 6, pp. 713-719. doi : 10.5802/crmath.86. http://www.numdam.org/articles/10.5802/crmath.86/
[1] On a dynamical version of a theorem of Rosenlicht, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 17 (2017) no. 1, pp. 187-204 | MR | Zbl
[2] Principal homogeneous spaces under flasque tori: applications, J. Algebra, Volume 106 (1987) no. 1, pp. 148-205 | DOI | MR | Zbl
[3] The structure of solvable groups over general fields, On group schemes. A celebration of SGA3 (Panoramas et Synthèses), Volume 46, Société Mathématique de France, 2015, pp. 159-192 | MR | Zbl
[4] Representation theory of finite groups and associative algebras, American Mathematical Society, 1966 | Zbl
[5] Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. Éc. Norm. Supér., Volume 3 (1970), pp. 507-588 | DOI | Numdam | Zbl
[6] Groupes algébriques, Masson, 1970 | Zbl
[7] Torsion homologique et sections rationnelles, Anneaux de Chow et applications (Séminaire Claude Chevalley), Volume 3, Secrétariat Mathématique, 1958, 5, 29 pages | Numdam
[8] Special reductive groups over an arbitrary field, Transform. Groups, Volume 21 (2016) no. 4, pp. 1079-1104 | DOI | MR | Zbl
[9] On representations of finite groups over valuation rings, Ill. J. Math., Volume 9 (1965), pp. 297-303 | DOI | MR | Zbl
[10] Algebraic groups. The theory of group schemes of finite type over a field, Cambridge Studies in Advanced Mathematics, 170, Cambridge University Press, 2017 | Zbl
[11] Invariant theory, Algebraic geometry IV: linear algebraic groups, invariant theory (Encyclopaedia of Mathematical Sciences), Volume 55, Springer, 1994, pp. 123-278 | DOI
[12] Special groups, versality and the Grothendieck–Serre conjecture, Doc. Math., Volume 25 (2020), pp. 171-188 | MR | Zbl
[13] Some basic theorems on algebraic groups, Am. J. Math., Volume 78 (1956), pp. 401-443 | DOI | MR | Zbl
[14] Questions of rationality for solvable algebraic groups over nonperfect fields, Ann. Mat. Pura Appl., Volume 62 (1963), pp. 97-120 | DOI | MR | Zbl
[15] Espaces fibrés algébriques, Anneaux de Chow et applications (Séminaire Claude Chevalley), Volume 3, Secrétariat Mathématique, 1958, 1, 37 pages | Numdam
[16] Special unipotent groups are split, J. Pure Appl. Algebra, Volume 222 (2018) no. 9, pp. 2465-2469 | MR | Zbl
[17] On algebraic groups of transformations, Am. J. Math., Volume 77 (1955), pp. 355-391 | DOI | MR | Zbl
Cité par Sources :