Problèmes mathématiques en mécanique, Géométrie différentielle
A nonlinear Korn inequality in n with an explicitly bounded constant
[Une inégalité de Korn non linéaire dans n avec une constante majorée explicitement]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 5, pp. 621-626.

Il est connu que la distance dans W 1,p entre une application dans W 1,p (Ω; n ) préservant l’orientation et une autre application ΘC 1 (Ω ¯; n ) préservant l’orientation, où Ω est un domain de n , n2, et p>1 est un nombre réel, est majorée par la distance dans L p entre les racines carrées des champs de tenseurs métriques induits par ces applications, multipliée par une constante dépendant uniquement de p, Ω, et Θ.

L’objet de cette Note est d’établir une meilleure inégalité de ce type, et de fournir en plus une borne supérieure explicitement calculable de la constante qui y apparaît. Un rôle essentiel est joué dans nos preuves par la notion de distance géodésique dans un ouvert de n .

It is known that the W 1,p -distance between an orientation-preserving mapping in W 1,p (Ω; n ) and another orientation-preserving mapping ΘC 1 (Ω ¯; n ), where Ω is a domain in n , n2, and p>1 is a real number, is bounded above by the L p -distance between the square roots of the metric tensor fields induced by these mappings, multiplied by a constant depending only on p, Ω, and Θ.

The object of this Note is to establish a better inequality of this type, and to provide in addition an explicitly computable upper bound on the constant appearing in it. An essential role is played in our proofs by the notion of geodesic distance inside an open subset of n .

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.84
Malin, Maria 1 ; Mardare, Cristinel 2

1 Department of Mathematics, University of Craiova, Craiova, Romania
2 Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong
@article{CRMATH_2020__358_5_621_0,
     author = {Malin, Maria and Mardare, Cristinel},
     title = {A nonlinear {Korn} inequality in $\protect \mathbb{R}^n$ with an explicitly bounded constant},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {621--626},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {5},
     year = {2020},
     doi = {10.5802/crmath.84},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.84/}
}
TY  - JOUR
AU  - Malin, Maria
AU  - Mardare, Cristinel
TI  - A nonlinear Korn inequality in $\protect \mathbb{R}^n$ with an explicitly bounded constant
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 621
EP  - 626
VL  - 358
IS  - 5
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.84/
DO  - 10.5802/crmath.84
LA  - en
ID  - CRMATH_2020__358_5_621_0
ER  - 
%0 Journal Article
%A Malin, Maria
%A Mardare, Cristinel
%T A nonlinear Korn inequality in $\protect \mathbb{R}^n$ with an explicitly bounded constant
%J Comptes Rendus. Mathématique
%D 2020
%P 621-626
%V 358
%N 5
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.84/
%R 10.5802/crmath.84
%G en
%F CRMATH_2020__358_5_621_0
Malin, Maria; Mardare, Cristinel. A nonlinear Korn inequality in $\protect \mathbb{R}^n$ with an explicitly bounded constant. Comptes Rendus. Mathématique, Tome 358 (2020) no. 5, pp. 621-626. doi : 10.5802/crmath.84. http://www.numdam.org/articles/10.5802/crmath.84/

[1] Adams, Robert A. Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press Inc., 1975 | MR | Zbl

[2] Anicic, Sylvia; Le Dret, Hervé; Raoult, Annie The infinitesimal rigid displacement lemma in Lipschitz coordinates and application to shells with minimal regularity, Math. Methods Appl. Sci., Volume 27 (2004) no. 11, pp. 1283-1299 | DOI | Zbl

[3] Ciarlet, Philippe G. Linear and Nonlinear Functional Analysis with Applications, Other Titles in Applied Mathematics, 130, Society for Industrial and Applied Mathematics, 2013 | Zbl

[4] Ciarlet, Philippe G.; Mardare, Cristinel Continuity of a deformation in H 1 as a function of its Cauchy-Green tensor in L 1 , J. Nonlinear Sci., Volume 14 (2004) no. 5, pp. 415-427 | DOI | MR | Zbl

[5] Ciarlet, Philippe G.; Mardare, Cristinel Nonlinear Korn inequalities, J. Math. Pures Appl., Volume 104 (2015) no. 6, pp. 1119-1134 | DOI | MR | Zbl

[6] Conti, Sergio Low-energy deformations of thin elastic plates: Isometric embeddings and branching patterns, 2004 (Habilitationsschrift, Universität Leipzig) | Zbl

[7] Friesecke, Gero; James, Richard D.; Müller, Stefan A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Commun. Pure Appl. Math., Volume 55 (2002) no. 11, pp. 1461-1506 | DOI | MR | Zbl

[8] Malin, M.; Mardare, Cristinel Estimates for the constant in two nonlinear Korn inequalities (in preparation)

[9] Mazʼya, Vladimir G. Sobolev Spaces, Springer, 1985

Cité par Sources :