Équations aux dérivées partielles
Effective transmission conditions for second-order elliptic equations on networks in the limit of thin domains
Comptes Rendus. Mathématique, Tome 358 (2020) no. 7, pp. 797-809.

We consider star-shaped tubular domains consisting of a number of non intersecting semi-infinite strips of small thickness that are connected by a central region of diameter proportional to the thickness of the strips. At the thin-domain limit, the region reduces to a network of half-lines with the same end point (junction). We show that the solutions of uniformly elliptic partial differential equations set on the domain with Neumann boundary conditions converge, in the thin-domain limit, to the unique solution of a second-order partial differential equation on the network satisfying an effective Kirchhoff-type transmission condition at the junction. The latter is found by solving an “ergodic”-type problem at infinity obtained after a first-order blow up at the junction.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.83
Classification : 35J15, 35J99, 35B40, 35B25, 49L25, 47H25
Lions, Pierre-Louis 1, 2 ; Souganidis, Panagiotis E. 3

1 Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
2 CEREMADE, Université de Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, 75016 Paris, France
3 Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, IL 60637, USA
@article{CRMATH_2020__358_7_797_0,
     author = {Lions, Pierre-Louis and Souganidis, Panagiotis E.},
     title = {Effective transmission conditions for second-order elliptic equations on networks in the limit of thin domains},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {797--809},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {7},
     year = {2020},
     doi = {10.5802/crmath.83},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.83/}
}
TY  - JOUR
AU  - Lions, Pierre-Louis
AU  - Souganidis, Panagiotis E.
TI  - Effective transmission conditions for second-order elliptic equations on networks in the limit of thin domains
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 797
EP  - 809
VL  - 358
IS  - 7
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.83/
DO  - 10.5802/crmath.83
LA  - en
ID  - CRMATH_2020__358_7_797_0
ER  - 
%0 Journal Article
%A Lions, Pierre-Louis
%A Souganidis, Panagiotis E.
%T Effective transmission conditions for second-order elliptic equations on networks in the limit of thin domains
%J Comptes Rendus. Mathématique
%D 2020
%P 797-809
%V 358
%N 7
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.83/
%R 10.5802/crmath.83
%G en
%F CRMATH_2020__358_7_797_0
Lions, Pierre-Louis; Souganidis, Panagiotis E. Effective transmission conditions for second-order elliptic equations on networks in the limit of thin domains. Comptes Rendus. Mathématique, Tome 358 (2020) no. 7, pp. 797-809. doi : 10.5802/crmath.83. http://www.numdam.org/articles/10.5802/crmath.83/

[1] Achdou, Yves; Tchou, Nicoletta Hamilton–Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction, Commun. Partial Differ. Equations, Volume 40 (2015) no. 4, pp. 652-693 | DOI | Zbl

[2] Barles, Guy; da Lio, Fransesca; Lions, Pierre-Louis; Souganidis, Panagiotis E. Ergodic problems and periodic homogenization for fully nonlinear equations in half-space type domains with Neumann boundary conditions, Indiana Univ. Math. J., Volume 57 (2008) no. 5, pp. 2355-2375 | DOI | MR | Zbl

[3] Caffarelli, Luis A.; Cabré, Xavier Fully nonlinear elliptic equations, Colloquium Publications, 43, American Mathematical Society, 1995 | MR | Zbl

[4] Crandall, Michael; Ishii, Hitoshi; Lions, Pierre-Louis User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., Volume 27 (1992) no. 1, pp. 1-67 | DOI | MR | Zbl

[5] Ishii, Hitoshi; Souganidis, Panagiotis E. A PDE approach to small stochastic perturbations of Hamiltonian flows, J. Differ. Equations, Volume 252 (2012) no. 2, pp. 1748-1775 | DOI | MR | Zbl

[6] Lions, Pierre-Louis; Souganidis, Panagiotis E. Well-posedness for multi-dimensional junction problems with Kirchoff-type conditions, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., Volume 28 (2017) no. 4, pp. 807-816 | DOI | MR | Zbl

[7] Trudinger, Neil S. Comparison principles and pointwise estimates for viscosity solutions, Rev. Mat. Iberoam., Volume 4 (1988) no. 3-4, pp. 453-468 | DOI | Zbl

Cité par Sources :