A family of infinite subsets of a countable set is called positive iff it is closed under supersets and finite changes and contains a co-infinite set. We show that a countable ultrahomogeneous relational structure has the strong amalgamation property iff the set contains a positive family. In that case the family of large copies of (i.e. copies having infinite intersection with each orbit) is the largest positive family in , and for each -embeddable Boolean linear order whose minimum is non-isolated there is a maximal chain isomorphic to in .
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_7_791_0, author = {Kurili\'c, Milo\v{s} S. and Kuzeljevi\'c, Bori\v{s}a}, title = {Positive families and {Boolean} chains of copies of ultrahomogeneous structures}, journal = {Comptes Rendus. Math\'ematique}, pages = {791--796}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {7}, year = {2020}, doi = {10.5802/crmath.82}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.82/} }
TY - JOUR AU - Kurilić, Miloš S. AU - Kuzeljević, Boriša TI - Positive families and Boolean chains of copies of ultrahomogeneous structures JO - Comptes Rendus. Mathématique PY - 2020 SP - 791 EP - 796 VL - 358 IS - 7 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.82/ DO - 10.5802/crmath.82 LA - en ID - CRMATH_2020__358_7_791_0 ER -
%0 Journal Article %A Kurilić, Miloš S. %A Kuzeljević, Boriša %T Positive families and Boolean chains of copies of ultrahomogeneous structures %J Comptes Rendus. Mathématique %D 2020 %P 791-796 %V 358 %N 7 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.82/ %R 10.5802/crmath.82 %G en %F CRMATH_2020__358_7_791_0
Kurilić, Miloš S.; Kuzeljević, Boriša. Positive families and Boolean chains of copies of ultrahomogeneous structures. Comptes Rendus. Mathématique, Tome 358 (2020) no. 7, pp. 791-796. doi : 10.5802/crmath.82. http://www.numdam.org/articles/10.5802/crmath.82/
[1] Invariant measures concentrated on countable structures, Forum Math. Sigma, Volume 4 (2016), e17, 59 pages | DOI | MR | Zbl
[2] Oligomorphic permutation groups, London Mathematical Society Lecture Note Series, 152, Cambridge University Press, 1990, viii+160 pages | DOI | MR | Zbl
[3] The classification of countable homogeneous directed graphs and countable homogeneous -tournaments, Mem. Am. Math. Soc., Volume 131 (1998) no. 621, p. xiv+161 | DOI | MR | Zbl
[4] Ramsey-type properties of relational structures, Discrete Math., Volume 94 (1991) no. 1, pp. 1-10 | DOI | MR | Zbl
[5] Sur certaines relations qui généralisent l’ordre des nombres rationnels, C. R. Math. Acad. Sci. Paris, Volume 237 (1953), pp. 540-542 | MR | Zbl
[6] Sur l’extension aux relations de quelques propriétés connues des ordres, C. R. Math. Acad. Sci. Paris, Volume 237 (1953), pp. 508-510 | MR | Zbl
[7] Sur l’extension aux relations de quelques propriétés des ordres, Ann. Sci. Éc. Norm. Supér., Volume 71 (1954), pp. 363-388 | DOI | MR | Zbl
[8] Theory of relations, Studies in Logic and the Foundations of Mathematics, 145, North-Holland, 2000, ii+451 pages (With an appendix by Norbert Sauer) | MR | Zbl
[9] Topology. Vol. I, Academic Press Inc.; Państwowe Wydawnictwo Naukowe, 1966, xx+560 pages (New edition, revised and augmented. Translated from the French by J. Jaworowski) | MR
[10] Maximal chains in positive subfamilies of , Order, Volume 29 (2012) no. 1, pp. 119-129 | DOI | MR | Zbl
[11] Maximal chains of copies of the rational line, Order, Volume 30 (2013) no. 3, pp. 737-748 | DOI | MR | Zbl
[12] Maximal chains of isomorphic subgraphs of countable ultrahomogeneous graphs, Adv. Math., Volume 264 (2014), pp. 762-775 | DOI | MR | Zbl
[13] Maximal chains of isomorphic suborders of countable ultrahomogeneous partial orders, Order, Volume 32 (2015) no. 1, pp. 83-99 | DOI | MR | Zbl
[14] Antichains of Copies of Ultrahomogeneous Structures, 2019 | arXiv
[15] A survey of homogeneous structures, Discrete Math., Volume 311 (2011) no. 15, pp. 1599-1634 | DOI | MR | Zbl
Cité par Sources :