For a regular Noetherian scheme with a divisor with strict normal crossings we prove that coherent sheaves satisfy descent w.r.t. the “covering” consisting of the open parts in the various completions of along the components of and their intersections.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_5_577_0, author = {H\"ormann, Fritz}, title = {Descent for coherent sheaves along formal/open coverings}, journal = {Comptes Rendus. Math\'ematique}, pages = {577--594}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {5}, year = {2020}, doi = {10.5802/crmath.75}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.75/} }
TY - JOUR AU - Hörmann, Fritz TI - Descent for coherent sheaves along formal/open coverings JO - Comptes Rendus. Mathématique PY - 2020 SP - 577 EP - 594 VL - 358 IS - 5 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.75/ DO - 10.5802/crmath.75 LA - en ID - CRMATH_2020__358_5_577_0 ER -
Hörmann, Fritz. Descent for coherent sheaves along formal/open coverings. Comptes Rendus. Mathématique, Tome 358 (2020) no. 5, pp. 577-594. doi : 10.5802/crmath.75. http://www.numdam.org/articles/10.5802/crmath.75/
[1] Un lemme de descente, C. R. Math. Acad. Sci. Paris, Volume 320 (1995) no. 3, pp. 335-340 | MR | Zbl
[2] Berkovich spaces and tubular descent, Adv. Math., Volume 234 (2013), pp. 217-238 | DOI | MR | Zbl
[3] Algebraization and Tannaka duality, Camb. J. Math., Volume 4 (2016) no. 4, pp. 403-461 | DOI | MR | Zbl
[4] Fibres formelles d’un anneau local noethérien, Ann. Sci. Éc. Norm. Supér., Volume 3 (1970), pp. 295-311 | DOI | Zbl
[5] Adelic descent theory, Compos. Math., Volume 153 (2017) no. 8, pp. 1706-1746 | DOI | MR | Zbl
[6] Eléments de géométrie algébrique. I, Grundlehren der Mathematischen Wissenschaften, 166, Springer, 1971, ix+466 pages | Zbl
[7] Generalized automorphic sheaves and the proportionality principle of Hirzebruch–Mumford (2016) | arXiv
[8] Fibered multiderivators and (co)homological descent, Theory Appl. Categ., Volume 32 (2017) no. 38, pp. 1258-1362 | MR | Zbl
[9] Cohomologie -adique et fonctions (Illusie, Luc, ed.), Lecture Notes in Mathematics, 589, Springer, 1977, xii+484 pages Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966 (SGA 5) | MR
[10] Un problème de descente, Bull. Soc. Math. Fr., Volume 124 (1996) no. 4, pp. 559-585 | DOI | Numdam | MR | Zbl
[11] Descent via Tannaka duality (2015) | arXiv
[12] Faisceaux algébriques cohérents, Ann. Math., Volume 61 (1955), pp. 197-278 | DOI | Zbl
[13] Stacks project (2014) (Available at http://stacks.math.columbia.edu)
Cité par Sources :