For a regular Noetherian scheme
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_5_577_0, author = {H\"ormann, Fritz}, title = {Descent for coherent sheaves along formal/open coverings}, journal = {Comptes Rendus. Math\'ematique}, pages = {577--594}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {5}, year = {2020}, doi = {10.5802/crmath.75}, language = {en}, url = {https://www.numdam.org/articles/10.5802/crmath.75/} }
TY - JOUR AU - Hörmann, Fritz TI - Descent for coherent sheaves along formal/open coverings JO - Comptes Rendus. Mathématique PY - 2020 SP - 577 EP - 594 VL - 358 IS - 5 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.75/ DO - 10.5802/crmath.75 LA - en ID - CRMATH_2020__358_5_577_0 ER -
%0 Journal Article %A Hörmann, Fritz %T Descent for coherent sheaves along formal/open coverings %J Comptes Rendus. Mathématique %D 2020 %P 577-594 %V 358 %N 5 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.75/ %R 10.5802/crmath.75 %G en %F CRMATH_2020__358_5_577_0
Hörmann, Fritz. Descent for coherent sheaves along formal/open coverings. Comptes Rendus. Mathématique, Tome 358 (2020) no. 5, pp. 577-594. doi : 10.5802/crmath.75. https://www.numdam.org/articles/10.5802/crmath.75/
[1] Un lemme de descente, C. R. Math. Acad. Sci. Paris, Volume 320 (1995) no. 3, pp. 335-340 | MR | Zbl
[2] Berkovich spaces and tubular descent, Adv. Math., Volume 234 (2013), pp. 217-238 | DOI | MR | Zbl
[3] Algebraization and Tannaka duality, Camb. J. Math., Volume 4 (2016) no. 4, pp. 403-461 | DOI | MR | Zbl
[4] Fibres formelles d’un anneau local noethérien, Ann. Sci. Éc. Norm. Supér., Volume 3 (1970), pp. 295-311 | DOI | Zbl
[5] Adelic descent theory, Compos. Math., Volume 153 (2017) no. 8, pp. 1706-1746 | DOI | MR | Zbl
[6] Eléments de géométrie algébrique. I, Grundlehren der Mathematischen Wissenschaften, 166, Springer, 1971, ix+466 pages | Zbl
[7] Generalized automorphic sheaves and the proportionality principle of Hirzebruch–Mumford (2016) | arXiv
[8] Fibered multiderivators and (co)homological descent, Theory Appl. Categ., Volume 32 (2017) no. 38, pp. 1258-1362 | MR | Zbl
[9] Cohomologie
[10] Un problème de descente, Bull. Soc. Math. Fr., Volume 124 (1996) no. 4, pp. 559-585 | DOI | Numdam | MR | Zbl
[11] Descent via Tannaka duality (2015) | arXiv
[12] Faisceaux algébriques cohérents, Ann. Math., Volume 61 (1955), pp. 197-278 | DOI | Zbl
[13] Stacks project (2014) (Available at http://stacks.math.columbia.edu)
Cité par Sources :