Théorie des fonctions, Combinatoire
New asymptotic expansions on hyperfactorial functions
Comptes Rendus. Mathématique, Tome 358 (2020) no. 9-10, pp. 971-980.

In this paper, by using the Bernoulli numbers and the exponential complete Bell polynomials, we establish four general asymptotic expansions for the hyperfactorial functions k=1 n k k q , which have only odd power terms or even power terms. We derive the recurrences for the parameter sequences in these four general expansions and give some special asymptotic expansions by these recurrences.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.73
Classification : 41A60, 05A15
Xu, Jianjun 1

1 Institute of Mathematics, Jilin University, Changchun 130012, China
@article{CRMATH_2020__358_9-10_971_0,
     author = {Xu, Jianjun},
     title = {New asymptotic expansions on hyperfactorial functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {971--980},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {9-10},
     year = {2020},
     doi = {10.5802/crmath.73},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.73/}
}
TY  - JOUR
AU  - Xu, Jianjun
TI  - New asymptotic expansions on hyperfactorial functions
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 971
EP  - 980
VL  - 358
IS  - 9-10
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.73/
DO  - 10.5802/crmath.73
LA  - en
ID  - CRMATH_2020__358_9-10_971_0
ER  - 
%0 Journal Article
%A Xu, Jianjun
%T New asymptotic expansions on hyperfactorial functions
%J Comptes Rendus. Mathématique
%D 2020
%P 971-980
%V 358
%N 9-10
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.73/
%R 10.5802/crmath.73
%G en
%F CRMATH_2020__358_9-10_971_0
Xu, Jianjun. New asymptotic expansions on hyperfactorial functions. Comptes Rendus. Mathématique, Tome 358 (2020) no. 9-10, pp. 971-980. doi : 10.5802/crmath.73. http://www.numdam.org/articles/10.5802/crmath.73/

[1] Adamchik, Victor S. Polygamma functions of negative order, J. Comput. Appl. Math., Volume 100 (1998) no. 2, pp. 191-199 | DOI | MR | Zbl

[2] Bendersky, L. Sur la fonction gamma généralisée, Acta Math., Volume 61 (1933), pp. 263-322 | DOI | MR | Zbl

[3] Chen, Chao-Ping Glaisher–Kinkelin constant, Integral Transforms Spec. Funct., Volume 23 (2012) no. 11, pp. 785-792 | DOI | MR | Zbl

[4] Chen, Chao-Ping Asymptotic expansions for Barnes G-function, J. Number Theory, Volume 135 (2014), pp. 36-42 | DOI | MR | Zbl

[5] Chen, Chao-Ping; Lin, Long Asymptotic expansions related to Glaisher–Kinkelin constant based on the Bell polynomials, J. Number Theory, Volume 133 (2013) no. 8, pp. 2699-2705 | DOI | MR | Zbl

[6] Cheng, Jun-Xiang; Chen, Chao-Ping Asymptotic expansions of the Glaisher–Kinkelin and Choi–Srivastava constants, J. Number Theory, Volume 144 (2014), pp. 105-110 | DOI | MR | Zbl

[7] Choi, Junesang A set of mathematical constants arising naturally in the theory of the multiple gamma functions, Abstr. Appl. Anal., Volume 2012 (2012), 121795, 11 pages | MR | Zbl

[8] Choudhury, Bejoy K. The Riemann zeta-function and its derivatives, Proc. R. Soc. Lond., Ser. A, Volume 450 (1995) no. 1940, pp. 477-499 | Zbl

[9] Lin, Long Inequalities and asymptotic expansions related to Glaisher–Kinkelin constant, Math. Inequal. Appl., Volume 17 (2014) no. 4, pp. 1343-1352 | MR | Zbl

[10] Lu, Dawei; Mortici, Cristinel Some new quicker approximations of Glaisher–Kinkelin’s and Bendersky–Adamchik’s constants, J. Number Theory, Volume 144 (2014), pp. 340-352 | MR | Zbl

[11] Mortici, Cristinel Approximating the constants of Glaisher–Kinkelin type, J. Number Theory, Volume 133 (2013) no. 8, pp. 2465-2469 | DOI | MR | Zbl

[12] Wang, Weiping Unified approaches to the approximations of the gamma function, J. Number Theory, Volume 163 (2016), pp. 570-595 | DOI | MR | Zbl

[13] Wang, Weiping Some asymptotic expansions on hyperfactorial functions and generalized Glaisher–Kinkelin constants, Ramanujan J., Volume 43 (2017) no. 3, pp. 513-533 | DOI | MR | Zbl

[14] Wang, Weiping; Liu, Hongmei Asymptotic expansions related to hyperfactorial function and Glaisher–Kinkelin constant, Appl. Math. Comput., Volume 283 (2016), pp. 153-162 | MR | Zbl

[15] Xu, Zhihang; Wang, Weiping More asymptotic expansions for the Barnes G-function, J. Number Theory, Volume 174 (2017), pp. 505-517 | MR | Zbl

[16] Yang, Zhenhang; Tian, Jing-Feng Asymptotic expansions for the gamma function in terms of hyperbolic functions, J. Math. Anal. Appl., Volume 478 (2019) no. 1, pp. 133-155 | DOI | MR | Zbl

Cité par Sources :