In this paper, by using the Bernoulli numbers and the exponential complete Bell polynomials, we establish four general asymptotic expansions for the hyperfactorial functions
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_9-10_971_0, author = {Xu, Jianjun}, title = {New asymptotic expansions on hyperfactorial functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {971--980}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {9-10}, year = {2020}, doi = {10.5802/crmath.73}, language = {en}, url = {https://www.numdam.org/articles/10.5802/crmath.73/} }
TY - JOUR AU - Xu, Jianjun TI - New asymptotic expansions on hyperfactorial functions JO - Comptes Rendus. Mathématique PY - 2020 SP - 971 EP - 980 VL - 358 IS - 9-10 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.73/ DO - 10.5802/crmath.73 LA - en ID - CRMATH_2020__358_9-10_971_0 ER -
%0 Journal Article %A Xu, Jianjun %T New asymptotic expansions on hyperfactorial functions %J Comptes Rendus. Mathématique %D 2020 %P 971-980 %V 358 %N 9-10 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.73/ %R 10.5802/crmath.73 %G en %F CRMATH_2020__358_9-10_971_0
Xu, Jianjun. New asymptotic expansions on hyperfactorial functions. Comptes Rendus. Mathématique, Tome 358 (2020) no. 9-10, pp. 971-980. doi : 10.5802/crmath.73. https://www.numdam.org/articles/10.5802/crmath.73/
[1] Polygamma functions of negative order, J. Comput. Appl. Math., Volume 100 (1998) no. 2, pp. 191-199 | DOI | MR | Zbl
[2] Sur la fonction gamma généralisée, Acta Math., Volume 61 (1933), pp. 263-322 | DOI | MR | Zbl
[3] Glaisher–Kinkelin constant, Integral Transforms Spec. Funct., Volume 23 (2012) no. 11, pp. 785-792 | DOI | MR | Zbl
[4] Asymptotic expansions for Barnes
[5] Asymptotic expansions related to Glaisher–Kinkelin constant based on the Bell polynomials, J. Number Theory, Volume 133 (2013) no. 8, pp. 2699-2705 | DOI | MR | Zbl
[6] Asymptotic expansions of the Glaisher–Kinkelin and Choi–Srivastava constants, J. Number Theory, Volume 144 (2014), pp. 105-110 | DOI | MR | Zbl
[7] A set of mathematical constants arising naturally in the theory of the multiple gamma functions, Abstr. Appl. Anal., Volume 2012 (2012), 121795, 11 pages | MR | Zbl
[8] The Riemann zeta-function and its derivatives, Proc. R. Soc. Lond., Ser. A, Volume 450 (1995) no. 1940, pp. 477-499 | Zbl
[9] Inequalities and asymptotic expansions related to Glaisher–Kinkelin constant, Math. Inequal. Appl., Volume 17 (2014) no. 4, pp. 1343-1352 | MR | Zbl
[10] Some new quicker approximations of Glaisher–Kinkelin’s and Bendersky–Adamchik’s constants, J. Number Theory, Volume 144 (2014), pp. 340-352 | MR | Zbl
[11] Approximating the constants of Glaisher–Kinkelin type, J. Number Theory, Volume 133 (2013) no. 8, pp. 2465-2469 | DOI | MR | Zbl
[12] Unified approaches to the approximations of the gamma function, J. Number Theory, Volume 163 (2016), pp. 570-595 | DOI | MR | Zbl
[13] Some asymptotic expansions on hyperfactorial functions and generalized Glaisher–Kinkelin constants, Ramanujan J., Volume 43 (2017) no. 3, pp. 513-533 | DOI | MR | Zbl
[14] Asymptotic expansions related to hyperfactorial function and Glaisher–Kinkelin constant, Appl. Math. Comput., Volume 283 (2016), pp. 153-162 | MR | Zbl
[15] More asymptotic expansions for the Barnes
[16] Asymptotic expansions for the gamma function in terms of hyperbolic functions, J. Math. Anal. Appl., Volume 478 (2019) no. 1, pp. 133-155 | DOI | MR | Zbl
Cité par Sources :