In this paper, by using the Bernoulli numbers and the exponential complete Bell polynomials, we establish four general asymptotic expansions for the hyperfactorial functions , which have only odd power terms or even power terms. We derive the recurrences for the parameter sequences in these four general expansions and give some special asymptotic expansions by these recurrences.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_9-10_971_0, author = {Xu, Jianjun}, title = {New asymptotic expansions on hyperfactorial functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {971--980}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {9-10}, year = {2020}, doi = {10.5802/crmath.73}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.73/} }
TY - JOUR AU - Xu, Jianjun TI - New asymptotic expansions on hyperfactorial functions JO - Comptes Rendus. Mathématique PY - 2020 SP - 971 EP - 980 VL - 358 IS - 9-10 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.73/ DO - 10.5802/crmath.73 LA - en ID - CRMATH_2020__358_9-10_971_0 ER -
Xu, Jianjun. New asymptotic expansions on hyperfactorial functions. Comptes Rendus. Mathématique, Tome 358 (2020) no. 9-10, pp. 971-980. doi : 10.5802/crmath.73. http://www.numdam.org/articles/10.5802/crmath.73/
[1] Polygamma functions of negative order, J. Comput. Appl. Math., Volume 100 (1998) no. 2, pp. 191-199 | DOI | MR | Zbl
[2] Sur la fonction gamma généralisée, Acta Math., Volume 61 (1933), pp. 263-322 | DOI | MR | Zbl
[3] Glaisher–Kinkelin constant, Integral Transforms Spec. Funct., Volume 23 (2012) no. 11, pp. 785-792 | DOI | MR | Zbl
[4] Asymptotic expansions for Barnes -function, J. Number Theory, Volume 135 (2014), pp. 36-42 | DOI | MR | Zbl
[5] Asymptotic expansions related to Glaisher–Kinkelin constant based on the Bell polynomials, J. Number Theory, Volume 133 (2013) no. 8, pp. 2699-2705 | DOI | MR | Zbl
[6] Asymptotic expansions of the Glaisher–Kinkelin and Choi–Srivastava constants, J. Number Theory, Volume 144 (2014), pp. 105-110 | DOI | MR | Zbl
[7] A set of mathematical constants arising naturally in the theory of the multiple gamma functions, Abstr. Appl. Anal., Volume 2012 (2012), 121795, 11 pages | MR | Zbl
[8] The Riemann zeta-function and its derivatives, Proc. R. Soc. Lond., Ser. A, Volume 450 (1995) no. 1940, pp. 477-499 | Zbl
[9] Inequalities and asymptotic expansions related to Glaisher–Kinkelin constant, Math. Inequal. Appl., Volume 17 (2014) no. 4, pp. 1343-1352 | MR | Zbl
[10] Some new quicker approximations of Glaisher–Kinkelin’s and Bendersky–Adamchik’s constants, J. Number Theory, Volume 144 (2014), pp. 340-352 | MR | Zbl
[11] Approximating the constants of Glaisher–Kinkelin type, J. Number Theory, Volume 133 (2013) no. 8, pp. 2465-2469 | DOI | MR | Zbl
[12] Unified approaches to the approximations of the gamma function, J. Number Theory, Volume 163 (2016), pp. 570-595 | DOI | MR | Zbl
[13] Some asymptotic expansions on hyperfactorial functions and generalized Glaisher–Kinkelin constants, Ramanujan J., Volume 43 (2017) no. 3, pp. 513-533 | DOI | MR | Zbl
[14] Asymptotic expansions related to hyperfactorial function and Glaisher–Kinkelin constant, Appl. Math. Comput., Volume 283 (2016), pp. 153-162 | MR | Zbl
[15] More asymptotic expansions for the Barnes -function, J. Number Theory, Volume 174 (2017), pp. 505-517 | MR | Zbl
[16] Asymptotic expansions for the gamma function in terms of hyperbolic functions, J. Math. Anal. Appl., Volume 478 (2019) no. 1, pp. 133-155 | DOI | MR | Zbl
Cité par Sources :