In this note, the rate of growth of digits in the Lüroth expansion of an irrational number is studied relative to the rate of approximation of the number by its convergents. The Hausdorff dimension of exceptional sets of points with a given relative growth rate is established.
Révisé le :
Accepté le :
Publié le :
Mots clés : Lüroth expansion, Hausdorff dimension, relative growth rate
@article{CRMATH_2020__358_5_557_0, author = {Tan, Xiaoyan and Zhang, Zhenliang}, title = {The relative growth rate for the digits in {L\"uroth} expansions}, journal = {Comptes Rendus. Math\'ematique}, pages = {557--562}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {5}, year = {2020}, doi = {10.5802/crmath.71}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.71/} }
TY - JOUR AU - Tan, Xiaoyan AU - Zhang, Zhenliang TI - The relative growth rate for the digits in Lüroth expansions JO - Comptes Rendus. Mathématique PY - 2020 SP - 557 EP - 562 VL - 358 IS - 5 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.71/ DO - 10.5802/crmath.71 LA - en ID - CRMATH_2020__358_5_557_0 ER -
%0 Journal Article %A Tan, Xiaoyan %A Zhang, Zhenliang %T The relative growth rate for the digits in Lüroth expansions %J Comptes Rendus. Mathématique %D 2020 %P 557-562 %V 358 %N 5 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.71/ %R 10.5802/crmath.71 %G en %F CRMATH_2020__358_5_557_0
Tan, Xiaoyan; Zhang, Zhenliang. The relative growth rate for the digits in Lüroth expansions. Comptes Rendus. Mathématique, Tome 358 (2020) no. 5, pp. 557-562. doi : 10.5802/crmath.71. http://www.numdam.org/articles/10.5802/crmath.71/
[1] Frequency of digits in the Lüroth expansion, J. Number Theory, Volume 129 (2009) no. 6, pp. 1479-1490 | DOI | Zbl
[2] The efficiency of approximating real numbers by Lüroth expansion, Czech. Math. J., Volume 63 (2013) no. 2, pp. 497-513 | Zbl
[3] Fractal geometry. Mathematical foundations and applications, John Wiley & Sons, 2014 | Zbl
[4] Reprentations of real numbers by infinite series, Lecture Notes in Mathematics, 502, Springer, 1976 | Zbl
[5] The relative growth rate for partial quotients, New York J. Math., Volume 14 (2008), pp. 139-143 | MR | Zbl
[6] On the longest block in Lüroth expansion, J. Math. Anal. Appl., Volume 457 (2018) no. 1, pp. 522-532 | Zbl
[7] Big Birkhoff sums in decaying Gauss like iterated function systems (2019) (https://arxiv.org/abs/1905.02547)
[8] Ueber eine eindeutige entwickelung von zahlen in eine unendliche reihe, Math. Ann., Volume 21 (1883) no. 2, pp. 411-423 | DOI | MR
[9] The fractional dimensional theory in Lüroth expansion, Czech. Math. J., Volume 61 (2011) no. 3, pp. 795-807 | DOI | Zbl
[10] A note on the largest digits in Lüroth expansion, Int. J. Number Theory, Volume 10 (2014) no. 4, pp. 1015-1023 | DOI | Zbl
[11] Level sets of partial maximal digits for Lüroth expansion, Int. J. Number Theory, Volume 13 (2017) no. 10, pp. 2777-2790 | DOI | Zbl
[12] A dimensional result in continued fractions, Int. J. Number Theory, Volume 10 (2014) no. 4, pp. 849-857 | DOI | MR | Zbl
[13] The relative growth rate for partial quotients in continued fractions, J. Math. Anal. Appl., Volume 478 (2019) no. 1, pp. 229-235 | DOI | MR | Zbl
[14] A note on the relative growth rate of the maximal digit in Lüroth expansions, Fractals (2020) (“online first”, https://doi.org/10.1142/S0218348X20501169) | DOI
Cité par Sources :