Probabilités, Statistiques
On weak law of large numbers for sums of negatively superadditive dependent random variables
[Sur la loi faible des grands nombres pour des sommes pondérées de variables aléatoires négativement superadditivement-dépendantes]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 1, pp. 13-21.

Dans cet article, nous étendons la loi faible des grands nombres de Kolmogorov–Feller à des sommes pondérées maximales de variables aléatoires négativement superadditivement-dépendantes (NSD). En outre, nous construisons une étude de simulation du comportement asymptotique au sens de la convergence en probabilité pour les sommes pondérées de variables aléatoires NSD.

In this paper, we extend Kolmogorov–Feller weak law of large numbers for maximal weighted sums of negatively superadditive dependent (NSD) random variables. In addition, we make a simulation study for the asymptotic behavior in the sense of convergence in probability for weighted sums of NSD random variables.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.7
Classification : 60F05, 60F15, 65C10
Naderi, Habib 1 ; Matuła, Przemysław 2 ; Salehi, Mahdi 3 ; Amini, Mohammad 4

1 Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran
2 Institute of Mathematics, Marie Curie-Skłodowska University, pl. M.C.-Skłodowskiej 1, 20-031 Lublin, Poland
3 Department of Mathematics and Statistics, University of Neyshabur, Neyshabur, Iran
4 Department of Statistics, Ordered data, reliability and dependency Center of Excellence, Ferdowsi University of Mashhad, P.O. Box 91775-1159, Mashhad, Iran
@article{CRMATH_2020__358_1_13_0,
     author = {Naderi, Habib and Matu{\l}a, Przemys{\l}aw and Salehi, Mahdi and Amini, Mohammad},
     title = {On weak law of large numbers for sums of negatively superadditive dependent random variables},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {13--21},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {1},
     year = {2020},
     doi = {10.5802/crmath.7},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.7/}
}
TY  - JOUR
AU  - Naderi, Habib
AU  - Matuła, Przemysław
AU  - Salehi, Mahdi
AU  - Amini, Mohammad
TI  - On weak law of large numbers for sums of negatively superadditive dependent random variables
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 13
EP  - 21
VL  - 358
IS  - 1
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.7/
DO  - 10.5802/crmath.7
LA  - en
ID  - CRMATH_2020__358_1_13_0
ER  - 
%0 Journal Article
%A Naderi, Habib
%A Matuła, Przemysław
%A Salehi, Mahdi
%A Amini, Mohammad
%T On weak law of large numbers for sums of negatively superadditive dependent random variables
%J Comptes Rendus. Mathématique
%D 2020
%P 13-21
%V 358
%N 1
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.7/
%R 10.5802/crmath.7
%G en
%F CRMATH_2020__358_1_13_0
Naderi, Habib; Matuła, Przemysław; Salehi, Mahdi; Amini, Mohammad. On weak law of large numbers for sums of negatively superadditive dependent random variables. Comptes Rendus. Mathématique, Tome 358 (2020) no. 1, pp. 13-21. doi : 10.5802/crmath.7. http://www.numdam.org/articles/10.5802/crmath.7/

[1] Adler, André; Matuła, Przemysław On exact strong laws of large numbers under general dependence conditions, Probab. Math. Stat., Volume 38 (2018) no. 1, pp. 103-121 | MR | Zbl

[2] Alam, Khursheed; Saxena, K. M. Lal Positive dependence in multivariate distributions, Commun. Stat., Theory Methods, Volume 10 (1981), pp. 1183-1196 | DOI | MR | Zbl

[3] Bingham, Nicholas H.; Goldie, Charles M.; Teugels, Jozef L. Regular variation, Encyclopedia of Mathematics and Its Applications, 27, Cambridge University Press, 1987 | MR | Zbl

[4] Block, Henry W.; Savits, Thomas H.; Shaked, Moshe Some concepts of negative dependence, Ann. Probab., Volume 10 (1982), pp. 765-772 | DOI | MR | Zbl

[5] Bulinski, Alexander; Shashkin, Alexey Limit theorems for associated random fields and related systems, Advanced Series on Statistical Science & Applied Probability, 10, World Scientific, 2007 | DOI | MR | Zbl

[6] Christofides, Tasos C.; Vaggelatou, Eutichia A connection between supermodular ordering and positive/negative association, J. Multivariate Anal., Volume 88 (2004) no. 1, pp. 138-151 | DOI | MR | Zbl

[7] Fazekas, István; Matuła, Przemysław; Ziemba, Maciej A note on the weighted strong law of large numbers under general conditions, Publ. Math., Volume 90 (2017) no. 3-4, pp. 373-386 | MR | Zbl

[8] Hu, Taizhong Negatively superadditive dependence of random variables with applications, Chin. J. Appl. Probab. Stat., Volume 16 (2000) no. 2, pp. 133-144 | MR | Zbl

[9] Jajte, Ryszard On the strong law of large numbers, Ann. Probab., Volume 31 (2003) no. 1, pp. 409-412 | MR | Zbl

[10] Joag-Dev, Kumar; Proschan, Frank Negative association of random variables with applications, Ann. Stat., Volume 11 (1983), pp. 286-295 | DOI | MR | Zbl

[11] Mallows, Colin L.; Richter, Donald Inequalities of Chebyshev type involving conditional expectations, Ann. Math. Stat., Volume 40 (1969), pp. 1922-1932 | DOI | MR | Zbl

[12] Naderi, H.; Matuła, Przemysław; Amini, M.; Ahmadzade, H. A version of the Kolmogorov–Feller weak law of large numbers for maximal weighted sums of random variables, Commun. Stat., Theory Methods, Volume 48 (2018) no. 21, pp. 5414-5418 | DOI

[13] Naderi, Habib; Matuła, Przemysław; Amini, Mohammad; Bozorgnia, Abolghasem On stochastic dominance and the strong law of large numbers for dependent random variables, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, Volume 110 (2016) no. 2, pp. 771-782 | DOI | MR | Zbl

[14] Petrov, Valentin V. Limit theorems of probability theory. Sequences of independent random variables, Oxford Studies in Probability, 4, Clarendon Press, 1995 | MR | Zbl

[15] Shen, Aiting On the strong law of large numbers for weighted sums of negatively superadditive dependent random variables, J. Korean Math. Soc., Volume 53 (2016) no. 1, pp. 45-55 | DOI | MR | Zbl

[16] Yuan, Demei; Hu, Xuemei A conditional version of the extended Kolmogorov-Feller weak law of large numbers, Stat. Probab. Lett., Volume 97 (2015), pp. 99-107 | DOI | MR | Zbl

Cité par Sources :