Dans cette note on calcule entièrement l’homologie de Margolis modulo 2 de l’algèbre de Dickson , i.e. l’homologie de en choisissant pour différentielles les opérations de Milnor , pour tous et . La motivation pour cette étude est le rôle clé joué par cette homologie dans l’étude de la K-théorie de Morava du groupe symétrique en lettres.
Nous montrons que la conjecture de Pengelley–Sinha sur pour est vraie si et seulement si . Pour notre résultat montre que la conjecture est fausse à cause de l’occurence d’éléments « critiques » de degré dans cette homologie pour et .
We completely compute the mod 2 Margolis homology of the Dickson algebra , i.e. the homology of with the differential to be the Milnor operation , for every and . The motivation for this problem is that, the Margolis homology of the Dickson algebra plays a key role in study of the Morava K-theory of the symmetric group on letters .
We show that Pengelley–Sinha’s conjecture on for is true if and only if or . For , our result proves that this conjecture turns out to be false since the occurrence of some “critical elements” ’s of degree in this homology for and .
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_4_505_0, author = {Hưng, Nguyễn H. V.}, title = {The mod~2 {Margolis} homology of the {Dickson} algebra}, journal = {Comptes Rendus. Math\'ematique}, pages = {505--510}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {4}, year = {2020}, doi = {10.5802/crmath.68}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.68/} }
TY - JOUR AU - Hưng, Nguyễn H. V. TI - The mod 2 Margolis homology of the Dickson algebra JO - Comptes Rendus. Mathématique PY - 2020 SP - 505 EP - 510 VL - 358 IS - 4 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.68/ DO - 10.5802/crmath.68 LA - en ID - CRMATH_2020__358_4_505_0 ER -
Hưng, Nguyễn H. V. The mod 2 Margolis homology of the Dickson algebra. Comptes Rendus. Mathématique, Tome 358 (2020) no. 4, pp. 505-510. doi : 10.5802/crmath.68. http://www.numdam.org/articles/10.5802/crmath.68/
[1] A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Am. Math. Soc., Volume 12 (1911), pp. 75-98 | DOI | MR | Zbl
[2] The action of the Steenrod squares on the modular invariants of linear groups, Proc. Am. Math. Soc., Volume 113 (1991) no. 4, pp. 1097-1104 | DOI | MR | Zbl
[3] Spherical classes and the Dickson algebra, Proc. Camb. Philos. Soc., Volume 124 (1998) no. 2, pp. 253-264 | MR | Zbl
[4] The Steenrod algebra and its dual, Ann. Math., Volume 67 (1958), pp. 150-171 | DOI | MR | Zbl
[5] Modular invariant theory and the cohomology algebras of symmetric group, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 22 (1975), pp. 319-369 | MR | Zbl
[6] Cohomology of symmetric groups, 2019 (Lecture on the Vietnam-US Mathematical joint Metting, Quynhon June 10-13)
[7] Realizability and nonrealizability of Dickson algebras as cohomology rings, Proc. Am. Math. Soc., Volume 89 (1983), pp. 303-313 | DOI | MR | Zbl
[8] The action of the primitive Steenrod-Milnor operations on the modular invariants, Proceedings of the school and conference in algebraic topology, the Vietnam National University, Hanoi, Vietnam, August 9–20, 2004 (Geometry and Topology Monographs), Volume 11, Geometry & Topology Publications, 2004, pp. 349-367 | Zbl
[9] A primer on the Dickson invariants, Proceedings of the Northwestern homotopy theory conference (Contemporary Mathematics), Volume 19, American Mathematical Society, 1983, pp. 421-434 | DOI | MR | Zbl
[10] On the Steenrod algebra of Morava K-theory, -Theory, Volume 22 (1980), pp. 423-438 | MR | Zbl
Cité par Sources :