Étant donné une mesure de probabilité sur un espace d’Alexandrov avec courbure minorée, nous prouvons que le support de la mesure poussée de sur le cône tangent à son barycentre (exponentiel) est un sous-ensemble d’un espace de Hilbert, sans condition de séparabilité du cône tangent.
Given a probability measure on an Alexandrov space with curvature bounded below, we prove that the support of the pushforward of on the tangent cone at its (exponential) barycenter is a subset of a Hilbert space, without separability of the tangent cone.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_4_489_0, author = {Le Gouic, Thibaut}, title = {A note on flatness of non separable tangent cone at a barycenter}, journal = {Comptes Rendus. Math\'ematique}, pages = {489--495}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {4}, year = {2020}, doi = {10.5802/crmath.66}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.66/} }
TY - JOUR AU - Le Gouic, Thibaut TI - A note on flatness of non separable tangent cone at a barycenter JO - Comptes Rendus. Mathématique PY - 2020 SP - 489 EP - 495 VL - 358 IS - 4 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.66/ DO - 10.5802/crmath.66 LA - en ID - CRMATH_2020__358_4_489_0 ER -
%0 Journal Article %A Le Gouic, Thibaut %T A note on flatness of non separable tangent cone at a barycenter %J Comptes Rendus. Mathématique %D 2020 %P 489-495 %V 358 %N 4 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.66/ %R 10.5802/crmath.66 %G en %F CRMATH_2020__358_4_489_0
Le Gouic, Thibaut. A note on flatness of non separable tangent cone at a barycenter. Comptes Rendus. Mathématique, Tome 358 (2020) no. 4, pp. 489-495. doi : 10.5802/crmath.66. http://www.numdam.org/articles/10.5802/crmath.66/
[1] On the rate of convergence of empirical barycentres in metric spaces: curvature, convexity and extendible geodesics (2018) (https://arxiv.org/abs/1806.02740v1)
[2] Alexandrov geometry (2019) (http://arxiv.org/abs/1903.08539) | Zbl
[3] A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, 2001 | MR | Zbl
[4] On tangent cones of Alexandrov spaces with curvature bounded below, Manuscr. Math., Volume 103 (2000) no. 2, pp. 169-182 | DOI | MR | Zbl
[5] Kirszbraun’s theorem and metric spaces of bounded curvature, Geom. Funct. Anal., Volume 7 (1997) no. 3, pp. 535-560 (Accessed 2019-05-15) | DOI | MR | Zbl
[6] Fast convergence of empirical barycenters in Alexandrov spaces and the Wasserstein space (2019) (https://arxiv.org/abs/1908.00828)
[7] Barycenters in Alexandrov spaces of curvature bounded below, Adv. Geom., Volume 12 (2012) no. 4, pp. 571-587 | MR | Zbl
[8] Metric spaces of lower bounded curvature, Expo. Math., Volume 17 (1999) no. 1, pp. 35-47 | MR | Zbl
[9] A rigidity theorem in Alexandrov spaces with lower curvature bound, Math. Ann., Volume 353 (2012) no. 2, pp. 305-331 | DOI | MR | Zbl
Cité par Sources :