Équations aux dérivées partielles, Analyse numérique
Some quasi-analytical solutions for propagative waves in free surface Euler equations
Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1111-1118.

Solutions quasi-analytiques d’ondes propagatives dans les équations d’Euler à surface libre. Cette note décrit des solutions quasi-analytiques correspondant à la propagation d’ondes dans les équations d’Euler et d’Euler linéarisées à surface libre. Les solutions obtenues varient d’une forme sinusoïdale à une forme présentant des singularités. Elles permettent de valider numériquement les codes de simulation des équations d’Euler à surface libre.

This note describes some quasi-analytical solutions for wave propagation in free surface Euler equations and linearized Euler equations. The obtained solutions vary from a sinusoidal form to a form with singularities. They allow a numerical validation of the free-surface Euler codes.

Reçu le :
Accepté le :
Accepté après révision le :
Publié le :
DOI : 10.5802/crmath.63
Bristeau, Marie-Odile 1 ; Di Martino, Bernard 2 ; Mangeney, Anne 1, 3 ; Sainte-Marie, Jacques 1 ; Souille, Fabien 1

1 ANGE project-team, Inria Paris, 2 rue Simone Iff, CS 42112, 75589 Paris Cedex 12, France; Sorbonne Université, Lab. Jacques-Louis Lions, 4 Place Jussieu, F-75252 Paris cedex 05
2 UMR CNRS 6134 SPE, Université de Corse, Campus Grimaldi, BP 52, 20250 Corte, France
3 Université de Paris, Institut de Physique du Globe de Paris, Seismology Group, 1 rue Jussieu, Paris F-75005, France
@article{CRMATH_2020__358_11-12_1111_0,
     author = {Bristeau, Marie-Odile and Di Martino, Bernard and Mangeney, Anne and Sainte-Marie, Jacques and Souille, Fabien},
     title = {Some quasi-analytical solutions for propagative waves in free surface {Euler} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1111--1118},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {11-12},
     year = {2020},
     doi = {10.5802/crmath.63},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.63/}
}
TY  - JOUR
AU  - Bristeau, Marie-Odile
AU  - Di Martino, Bernard
AU  - Mangeney, Anne
AU  - Sainte-Marie, Jacques
AU  - Souille, Fabien
TI  - Some quasi-analytical solutions for propagative waves in free surface Euler equations
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1111
EP  - 1118
VL  - 358
IS  - 11-12
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.63/
DO  - 10.5802/crmath.63
LA  - en
ID  - CRMATH_2020__358_11-12_1111_0
ER  - 
%0 Journal Article
%A Bristeau, Marie-Odile
%A Di Martino, Bernard
%A Mangeney, Anne
%A Sainte-Marie, Jacques
%A Souille, Fabien
%T Some quasi-analytical solutions for propagative waves in free surface Euler equations
%J Comptes Rendus. Mathématique
%D 2020
%P 1111-1118
%V 358
%N 11-12
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.63/
%R 10.5802/crmath.63
%G en
%F CRMATH_2020__358_11-12_1111_0
Bristeau, Marie-Odile; Di Martino, Bernard; Mangeney, Anne; Sainte-Marie, Jacques; Souille, Fabien. Some quasi-analytical solutions for propagative waves in free surface Euler equations. Comptes Rendus. Mathématique, Tome 358 (2020) no. 11-12, pp. 1111-1118. doi : 10.5802/crmath.63. http://www.numdam.org/articles/10.5802/crmath.63/

[1] Amick, Charles J. Bounds for water waves, Arch. Ration. Mech. Anal., Volume 99 (1987) no. 2, pp. 91-114 | DOI | MR | Zbl

[2] Boulanger, Anne-Cécile; Bristeau, Marie-Odile; Sainte-Marie, Jacques Analytical solutions for the free surface hydrostatic Euler equations, Commun. Math. Sci., Volume 11 (2013) no. 4, pp. 993-1010 | DOI | MR | Zbl

[3] Constantin, Adrian; Strauss, Walter A. Exact steady periodic water waves with vorticity, Commun. Pure Appl. Math., Volume 57 (2004) no. 4, pp. 481-527 | DOI | MR | Zbl

[4] Corless, Robert Malcolm; Gonnet, Gaston H.; Hare, David E. G.; Jeffrey, David J.; Knuth, Donald E. On the Lambert w function, Adv. Comput. Math., Volume 5 (1996) no. 4, pp. 329-359 | DOI | MR | Zbl

[5] Craik, Alex D. D. The origins of water wave theory, Annual review of fluid mechanics (Annual Review of Fluid Mechanics), Volume 36, Annual Reviews, 2004, pp. 1-28 | DOI | MR | Zbl

[6] Daboussy, D.; Dias, F.; Vanden-Broeck, Jean-Marc On explicite solutions of the free-surface Euler equations in the presence of gravity, Phys. Fluids, Volume 9 (1997) no. 10, pp. 2828-2834 | DOI | Zbl

[7] Dingemans, Marteen W. Water wave propagation over uneven bottoms. Part 1: Linear wave propagation. Part 2: Non-linear wave propagation. (2 vol.). (Advanced Series on Ocean Engineering), Volume 13, World Scientific, 1997 (NASA Sti/Recon Technical Report N, pages 171-184, §2.8) | Zbl

[8] Houghton, David D.; Kasahara, Akira Nonlinear shallow fluid flow over an isolated ridge, Commun. Pure Appl. Math., Volume 21 (1968), pp. 1-23 | DOI | Zbl

[9] Kalimeris, Konstantinos Analytical approximation and numerical simulations for periodic travelling water waves, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 376 (2017) no. 21111, 20170093, 19 pages | DOI | MR | Zbl

[10] Lannes, David The water waves problem. Mathematical analysis and asymptotics., Mathematical Surveys and Monographs, 188, American Mathematical Society, 2013 | Zbl

[11] Longuet-Higgins, Michael Selwyn A Theory of the Origin of Microseisms, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 243 (1950) no. 857, pp. 1-35 | MR | Zbl

[12] Stoker, James J. The formation of breakers and bores the theory of nonlinear wave propagation in shallow water and open channels, Commun. Pure Appl. Math., Volume 1 (1948), pp. 1-87 | MR | Zbl

[13] Strauss, Walter A.; Wheeler, Miles H. Bound on the Slope of Steady Water Waves with Favorable Vorticity, Arch. Ration. Mech. Anal., Volume 222 (2016) no. 3, pp. 1555-1580 | DOI | MR | Zbl

Cité par Sources :