We resolve three interrelated problems on reduced Kronecker coefficients . First, we disprove the saturation property which states that implies for all . Second, we esimate the maximal , over all . Finally, we show that computing is strongly -hard, i.e. -hard when the input is in unary.
Accepté le :
Accepté après révision le :
Publié le :
@article{CRMATH_2020__358_4_463_0, author = {Pak, Igor and Panova, Greta}, title = {Breaking down the reduced {Kronecker} coefficients}, journal = {Comptes Rendus. Math\'ematique}, pages = {463--468}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {4}, year = {2020}, doi = {10.5802/crmath.60}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.60/} }
TY - JOUR AU - Pak, Igor AU - Panova, Greta TI - Breaking down the reduced Kronecker coefficients JO - Comptes Rendus. Mathématique PY - 2020 SP - 463 EP - 468 VL - 358 IS - 4 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.60/ DO - 10.5802/crmath.60 LA - en ID - CRMATH_2020__358_4_463_0 ER -
%0 Journal Article %A Pak, Igor %A Panova, Greta %T Breaking down the reduced Kronecker coefficients %J Comptes Rendus. Mathématique %D 2020 %P 463-468 %V 358 %N 4 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.60/ %R 10.5802/crmath.60 %G en %F CRMATH_2020__358_4_463_0
Pak, Igor; Panova, Greta. Breaking down the reduced Kronecker coefficients. Comptes Rendus. Mathématique, Tome 358 (2020) no. 4, pp. 463-468. doi : 10.5802/crmath.60. http://www.numdam.org/articles/10.5802/crmath.60/
[1] On the Durfee size of Kronecker products of characters of the symmetric group and its double covers, J. Algebra, Volume 280 (2004) no. 1, pp. 132-144 | DOI | MR | Zbl
[2] The partition algebra and the Kronecker coefficients, Trans. Am. Math. Soc., Volume 367 (2015) no. 5, pp. 3647-3667 | DOI | MR | Zbl
[3] The stability of the Kronecker product of Schur functions, J. Algebra, Volume 331 (2011) no. 1, pp. 11-27 | DOI | MR | Zbl
[4] Nonzero Kronecker coefficients and what they tell us about spectra, Commun. Math. Phys., Volume 270 (2007) no. 3, pp. 575-585 | DOI | MR | Zbl
[5] Combinatorics on a family of reduced Kronecker coefficients, C. R. Math. Acad. Sci. Paris, Volume 353 (2015) no. 10, pp. 865-869 | DOI | MR | Zbl
[6] On the Kronecker product of characters, J. Algebra, Volume 154 (1993) no. 1, pp. 125-140 | DOI | MR | Zbl
[7] On vanishing of Kronecker coefficients, Comput. Complexity, Volume 26 (2017) no. 4, pp. 949-992 | DOI | MR | Zbl
[8] Rectangular Kronecker coefficients and plethysms in geometric complexity theory, Adv. Math., Volume 319 (2017), pp. 40-66 | DOI | MR | Zbl
[9] An invitation to the generalized saturation conjecture, Publ. Res. Inst. Math. Sci., Volume 40 (2004) no. 4, pp. 1147-1239 | DOI | MR | Zbl
[10] Quantum marginal problem and representations of the symmetric group (2004) (https://arxiv.org/abs/quant-ph/0409113)
[11] The honeycomb model of tensor products. I: Proof of the saturation conjecture, J. Am. Math. Soc., Volume 12 (1999) no. 4, pp. 1055-1090 | DOI | MR | Zbl
[12] Products and plethysms of characters with orthogonal, symplectic and symmetric groups, Can. J. Math., Volume 10 (1958), pp. 17-32 | DOI | MR | Zbl
[13] On the asymptotics of Kronecker coefficients, J. Algebr. Comb., Volume 42 (2015) no. 4, pp. 999-1025 | DOI | MR | Zbl
[14] Geometric complexity theory III: On deciding nonvanishing of a Littlewood–Richardson coefficient, J. Algebr. Comb., Volume 36 (2012), pp. 103-110 | DOI | MR | Zbl
[15] The analysis of the Kronecker product of irreducible representations of the symmetric group, Am. J. Math., Volume 60 (1938), pp. 761-784 | DOI | MR | Zbl
[16] On the Kronecker product of irreducible representations of the symmetric group, Proc. Natl. Acad. Sci. USA, Volume 42 (1956), pp. 95-98 | DOI | MR | Zbl
[17] On the complexity of computing Kostka numbers and Littlewood–Richardson coefficients, J. Algebr. Comb., Volume 24 (2006) no. 3, pp. 347-354 | DOI | MR | Zbl
[18] Products of symmetric group characters, J. Comb. Theory, Ser. A, Volume 165 (2019), pp. 299-324 | DOI | MR | Zbl
[19] On the complexity of computing Kronecker coefficients, Comput. Complexity, Volume 26 (2017) no. 1, pp. 1-36 | MR | Zbl
[20] Upper bounds on Kronecker coefficients with few rows (2020) (https://arxiv.org/abs/2002.10956)
[21] On the largest Kronecker and Littlewood–Richardson coefficients, J. Comb. Theory, Ser. A, Volume 165 (2019), pp. 44-77 | MR | Zbl
[22] Proof of Stembridge’s conjecture on stability of Kronecker, J. Algebr. Comb., Volume 43 (2016) no. 1, pp. 1-10 | MR | Zbl
[23] Enumerative Combinatorics. Volume 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, 1999 | Zbl
[24] Positivity problems and conjectures in algebraic combinatorics, Mathematics: frontiers and perspectives, American Mathematical Society, 2000, pp. 295-319 | Zbl
[25] Supplementary Excercies to [23, Ch. 7], 2011 (http://www-math.mit.edu/~rstan/ec)
[26] Plethysm and Kronecker Products, 2016 (talk slides, http://www-math.mit.edu/~rstan/transparencies/plethysm.pdf)
[27] Stability of Kronecker products of irreducible characters of the symmetric group, Electron. J. Comb., Volume 6 (1999) no. 1, R39, 7 pages | MR | Zbl
Cité par Sources :