Théorie des représentations, Algèbre, Combinatoire
Breaking down the reduced Kronecker coefficients
[Analyse fine des coefficients de Kronecker réduits]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 4, pp. 463-468.

We resolve three interrelated problems on reduced Kronecker coefficients g ¯(α,β,γ). First, we disprove the saturation property which states that g ¯(Nα,Nβ,Nγ)>0 implies g ¯(α,β,γ)>0 for all N>1. Second, we esimate the maximal g ¯(α,β,γ), over all |α|+|β|+|γ|=n. Finally, we show that computing g ¯(λ,μ,ν) is strongly #P-hard, i.e. #P-hard when the input (λ,μ,ν) is in unary.

Reçu le :
Accepté le :
Accepté après révision le :
Publié le :
DOI : 10.5802/crmath.60
Pak, Igor 1 ; Panova, Greta 2

1 Department of Mathematics, UCLA, Los Angeles, CA 90095, USA
2 Department of Mathematics, USC, Los Angeles, CA 90089, USA
@article{CRMATH_2020__358_4_463_0,
     author = {Pak, Igor and Panova, Greta},
     title = {Breaking down the reduced {Kronecker} coefficients},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {463--468},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {4},
     year = {2020},
     doi = {10.5802/crmath.60},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.60/}
}
TY  - JOUR
AU  - Pak, Igor
AU  - Panova, Greta
TI  - Breaking down the reduced Kronecker coefficients
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 463
EP  - 468
VL  - 358
IS  - 4
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.60/
DO  - 10.5802/crmath.60
LA  - en
ID  - CRMATH_2020__358_4_463_0
ER  - 
%0 Journal Article
%A Pak, Igor
%A Panova, Greta
%T Breaking down the reduced Kronecker coefficients
%J Comptes Rendus. Mathématique
%D 2020
%P 463-468
%V 358
%N 4
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.60/
%R 10.5802/crmath.60
%G en
%F CRMATH_2020__358_4_463_0
Pak, Igor; Panova, Greta. Breaking down the reduced Kronecker coefficients. Comptes Rendus. Mathématique, Tome 358 (2020) no. 4, pp. 463-468. doi : 10.5802/crmath.60. http://www.numdam.org/articles/10.5802/crmath.60/

[1] Bessenrodt, Christine; Behns, Christiane On the Durfee size of Kronecker products of characters of the symmetric group and its double covers, J. Algebra, Volume 280 (2004) no. 1, pp. 132-144 | DOI | MR | Zbl

[2] Bowman, Christopher; De Visscher, Maud; Orellana, Rosa The partition algebra and the Kronecker coefficients, Trans. Am. Math. Soc., Volume 367 (2015) no. 5, pp. 3647-3667 | DOI | MR | Zbl

[3] Briand, Emmanuel; Orellana, Rosa; Rosas, Mercedes The stability of the Kronecker product of Schur functions, J. Algebra, Volume 331 (2011) no. 1, pp. 11-27 | DOI | MR | Zbl

[4] Christandl, Matthias; Harrow, Aram W.; Mitchison, Graeme Nonzero Kronecker coefficients and what they tell us about spectra, Commun. Math. Phys., Volume 270 (2007) no. 3, pp. 575-585 | DOI | MR | Zbl

[5] Colmenarejo, Laura; Rosas, Mercedes Combinatorics on a family of reduced Kronecker coefficients, C. R. Math. Acad. Sci. Paris, Volume 353 (2015) no. 10, pp. 865-869 | DOI | MR | Zbl

[6] Dvir, Yoav On the Kronecker product of S n characters, J. Algebra, Volume 154 (1993) no. 1, pp. 125-140 | DOI | MR | Zbl

[7] Ikenmeyer, Christian; Mulmuley, Ketan D.; Walter, Michael On vanishing of Kronecker coefficients, Comput. Complexity, Volume 26 (2017) no. 4, pp. 949-992 | DOI | MR | Zbl

[8] Ikenmeyer, Christian; Panova, Greta Rectangular Kronecker coefficients and plethysms in geometric complexity theory, Adv. Math., Volume 319 (2017), pp. 40-66 | DOI | MR | Zbl

[9] Kirillov, Anatol N. An invitation to the generalized saturation conjecture, Publ. Res. Inst. Math. Sci., Volume 40 (2004) no. 4, pp. 1147-1239 | DOI | MR | Zbl

[10] Klyachko, Alexander Quantum marginal problem and representations of the symmetric group (2004) (https://arxiv.org/abs/quant-ph/0409113)

[11] Knutson, Allen; Tao, Terence The honeycomb model of GL n () tensor products. I: Proof of the saturation conjecture, J. Am. Math. Soc., Volume 12 (1999) no. 4, pp. 1055-1090 | DOI | MR | Zbl

[12] Littlewood, Dudley E. Products and plethysms of characters with orthogonal, symplectic and symmetric groups, Can. J. Math., Volume 10 (1958), pp. 17-32 | DOI | MR | Zbl

[13] Manivel, Laurent On the asymptotics of Kronecker coefficients, J. Algebr. Comb., Volume 42 (2015) no. 4, pp. 999-1025 | DOI | MR | Zbl

[14] Mulmuley, Ketan D.; Narayanan, Hariharan; Sohoni, Milind Geometric complexity theory III: On deciding nonvanishing of a Littlewood–Richardson coefficient, J. Algebr. Comb., Volume 36 (2012), pp. 103-110 | DOI | MR | Zbl

[15] Murnaghan, Francis D. The analysis of the Kronecker product of irreducible representations of the symmetric group, Am. J. Math., Volume 60 (1938), pp. 761-784 | DOI | MR | Zbl

[16] Murnaghan, Francis D. On the Kronecker product of irreducible representations of the symmetric group, Proc. Natl. Acad. Sci. USA, Volume 42 (1956), pp. 95-98 | DOI | MR | Zbl

[17] Narayanan, Hariharan On the complexity of computing Kostka numbers and Littlewood–Richardson coefficients, J. Algebr. Comb., Volume 24 (2006) no. 3, pp. 347-354 | DOI | MR | Zbl

[18] Orellana, Rosa; Zabrocki, Mike Products of symmetric group characters, J. Comb. Theory, Ser. A, Volume 165 (2019), pp. 299-324 | DOI | MR | Zbl

[19] Pak, Igor; Panova, Greta On the complexity of computing Kronecker coefficients, Comput. Complexity, Volume 26 (2017) no. 1, pp. 1-36 | MR | Zbl

[20] Pak, Igor; Panova, Greta Upper bounds on Kronecker coefficients with few rows (2020) (https://arxiv.org/abs/2002.10956)

[21] Pak, Igor; Panova, Greta; Yeliussizov, Damir On the largest Kronecker and Littlewood–Richardson coefficients, J. Comb. Theory, Ser. A, Volume 165 (2019), pp. 44-77 | MR | Zbl

[22] Sam, Steven V.; Snowden, Andrew Proof of Stembridge’s conjecture on stability of Kronecker, J. Algebr. Comb., Volume 43 (2016) no. 1, pp. 1-10 | MR | Zbl

[23] Stanley, Richard P. Enumerative Combinatorics. Volume 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, 1999 | Zbl

[24] Stanley, Richard P. Positivity problems and conjectures in algebraic combinatorics, Mathematics: frontiers and perspectives, American Mathematical Society, 2000, pp. 295-319 | Zbl

[25] Stanley, Richard P. Supplementary Excercies to [23, Ch. 7], 2011 (http://www-math.mit.edu/~rstan/ec)

[26] Stanley, Richard P. Plethysm and Kronecker Products, 2016 (talk slides, http://www-math.mit.edu/~rstan/transparencies/plethysm.pdf)

[27] Vallejo, Ernesto Stability of Kronecker products of irreducible characters of the symmetric group, Electron. J. Comb., Volume 6 (1999) no. 1, R39, 7 pages | MR | Zbl

Cité par Sources :