Nous étudions les premières intégrales analytiques, rationnelles et du système de Maxwell–Bloch
où sont des paramètres réels. En outre, nous prouvons que ce système est non intégrable rationnel dans le sens de Bogoyavlenskij pour presque toutes les valeurs de paramètres.
We investigate the analytic, rational and first integrals of the Maxwell–Bloch system
where are real parameters. In addition, we prove this system is rationally non-integrable in the sense of Bogoyavlenskij for almost all parameter values.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_1_3_0, author = {Huang, Kaiyin and Shi, Shaoyun and Li, Wenlei}, title = {First integrals of the {Maxwell{\textendash}Bloch} system}, journal = {Comptes Rendus. Math\'ematique}, pages = {3--11}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {1}, year = {2020}, doi = {10.5802/crmath.6}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.6/} }
TY - JOUR AU - Huang, Kaiyin AU - Shi, Shaoyun AU - Li, Wenlei TI - First integrals of the Maxwell–Bloch system JO - Comptes Rendus. Mathématique PY - 2020 SP - 3 EP - 11 VL - 358 IS - 1 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.6/ DO - 10.5802/crmath.6 LA - en ID - CRMATH_2020__358_1_3_0 ER -
%0 Journal Article %A Huang, Kaiyin %A Shi, Shaoyun %A Li, Wenlei %T First integrals of the Maxwell–Bloch system %J Comptes Rendus. Mathématique %D 2020 %P 3-11 %V 358 %N 1 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.6/ %R 10.5802/crmath.6 %G en %F CRMATH_2020__358_1_3_0
Huang, Kaiyin; Shi, Shaoyun; Li, Wenlei. First integrals of the Maxwell–Bloch system. Comptes Rendus. Mathématique, Tome 358 (2020) no. 1, pp. 3-11. doi : 10.5802/crmath.6. http://www.numdam.org/articles/10.5802/crmath.6/
[1] Chaos and generalized multistability in quantum optics, Phys. Scr., Volume T9 (1985), pp. 85-92 | DOI
[2] Galoisian obstructions to non-Hamiltonian integrability, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 23-24, pp. 1323-1326 | DOI | MR | Zbl
[3] On the infinitesimal geometry of integrable systems, Mechanics day (Waterloo, ON, 1992) (Fields Institute Communications), Volume 7, American Mathematical Society, 1992, pp. 5-56 | Zbl
[4] Extended integrability and bi-Hamiltonian systems, Commun. Math. Phys., Volume 196 (1998) no. 1, pp. 19-51 | DOI | MR | Zbl
[5] Persistence of periodic solutions for higher order perturbed differential systems via Lyapunov-Schmidt reduction, Nonlinearity, Volume 30 (2017) no. 9, pp. 3560-3586 | DOI | MR | Zbl
[6] Group-theoretic obstructions to integrability, Ergodic Theory Dyn. Syst., Volume 15 (1995) no. 1, pp. 15-48 | DOI | MR | Zbl
[7] Approximate solutions of Maxwell-Bloch equations and possible Lotka Volterra type behavior, Nonlinear Dyn., Volume 62 (2010) no. 1-2, pp. 17-26 | DOI | MR | Zbl
[8] Dynamics of Lasers, Soviet Radio, 1975
[9] Elements of applied bifurcation theory, Springer, 2013 | Zbl
[10] Local first integrals of differential systems and diffeomorphisms, Z. Angew. Math. Phys., Volume 54 (2003) no. 2, pp. 235-255 | MR | Zbl
[11] Galoisian obstruction to the integrability of general dynamical systems, Dyn. Syst., Volume 252 (2012) no. 10, pp. 5518-5534 | MR | Zbl
[12] Corrigendum to “Galoisian obstruction to the integrability of general dynamical systems”, Dyn. Syst., Volume 262 (2017) no. 3, pp. 1253-1256 | Zbl
[13] OIdentifying weak foci and centers in the Maxwell–Bloch system, J. Math. Anal. Appl., Volume 430 (2015) no. 1, pp. 549-571 | Zbl
[14] Formal and analytic integrability of the Lorenz system, J. Phys. A, Math. Gen., Volume 38 (2005) no. 12, pp. 2681-2686 | DOI | MR | Zbl
[15] Global analytic integrability of the Rabinovich system, J. Geom. Phys., Volume 58 (2008) no. 12, pp. 1762-1771 | DOI | MR | Zbl
[16] Analytic first integrals of the FitzHugh–Nagumo systems, Z. Angew. Math. Phys., Volume 60 (2009) no. 2, pp. 237-245 | DOI | MR | Zbl
[17] On the non-integrability of differential systems via periodic orbits, Eur. J. Appl. Math., Volume 22 (2011) no. 4, pp. 381-391 | MR | Zbl
[18] On the Hamilton-Poisson realizations of the integrable deformations of the Maxwell–Bloch equations, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 5, pp. 596-600 | DOI | MR | Zbl
[19] Differential Galois theory and non-integrability of Hamiltonian systems, Progress in Mathematics, 179, Birkhäuser, 1999 | MR | Zbl
[20] Galoisian obstructions to integrability of Hamiltonian systems. I. II., Methods Appl. Anal., Volume 8 (2001) no. 1, p. 33-95, 97–111 | MR | Zbl
[21] Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré, Palermo Rend., Volume 5 (1897), pp. 193-239 | DOI | Zbl
Cité par Sources :