[Symétrie radiale des solutions d’équations elliptiques fractionnaires singulières et quelques applications]
Dans cet article, nous étudions la symétrie et la monotonie des solutions positives d’une équation elliptique semi-linéaire singulière dont le modèle type est
où
In this article, we study the symmetry of positive solutions to a class of singular semilinear elliptic equations whose prototype is
where
Accepté le :
Publié le :
@article{CRMATH_2020__358_2_237_0, author = {Arora, Rakesh and Giacomoni, Jacques and Goel, Divya and Sreenadh, Konijeti}, title = {Symmetry of solutions to singular fractional elliptic equations and applications}, journal = {Comptes Rendus. Math\'ematique}, pages = {237--243}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {2}, year = {2020}, doi = {10.5802/crmath.58}, language = {en}, url = {https://www.numdam.org/articles/10.5802/crmath.58/} }
TY - JOUR AU - Arora, Rakesh AU - Giacomoni, Jacques AU - Goel, Divya AU - Sreenadh, Konijeti TI - Symmetry of solutions to singular fractional elliptic equations and applications JO - Comptes Rendus. Mathématique PY - 2020 SP - 237 EP - 243 VL - 358 IS - 2 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.58/ DO - 10.5802/crmath.58 LA - en ID - CRMATH_2020__358_2_237_0 ER -
%0 Journal Article %A Arora, Rakesh %A Giacomoni, Jacques %A Goel, Divya %A Sreenadh, Konijeti %T Symmetry of solutions to singular fractional elliptic equations and applications %J Comptes Rendus. Mathématique %D 2020 %P 237-243 %V 358 %N 2 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.58/ %R 10.5802/crmath.58 %G en %F CRMATH_2020__358_2_237_0
Arora, Rakesh; Giacomoni, Jacques; Goel, Divya; Sreenadh, Konijeti. Symmetry of solutions to singular fractional elliptic equations and applications. Comptes Rendus. Mathématique, Tome 358 (2020) no. 2, pp. 237-243. doi : 10.5802/crmath.58. https://www.numdam.org/articles/10.5802/crmath.58/
[1] Positive solutions to a fractional equation with singular nonlinearity, J. Differ. Equations, Volume 265 (2018) no. 4, pp. 1191-1226 | DOI | MR
[2] Positive solutions of
[3] Semilinear problems for the fractional laplacian with a singular nonlinearity, Open Math., Volume 13 (2015), pp. 390-407 | MR | Zbl
[4] A note on isolated singularities for linear elliptic equations, Mathematical analysis and applications. Part A. (Advances in Mathematics. Supplementary Studies), Volume 7a, Academic Press Inc., 1981, pp. 263-266 | Zbl
[5] Classification of isolated singularities of nonnegative solutions to fractional semi-linear elliptic equations and the existence results, J. Lond. Math. Soc., Volume 97 (2018) no. 2, pp. 196-221 | DOI | MR | Zbl
[6] A direct method of moving planes for the fractional Laplacian, Adv. Math., Volume 308 (2017), pp. 404-437 | DOI | MR | Zbl
[7] Apriori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl., Volume 61 (1982), pp. 263-275 | Zbl
[8] Critical growth problems for
[9] Positive solutions of fractional elliptic equation with critical and singular nonlinearty, Adv. Nonlinear Anal., Volume 6 (2017) no. 3, pp. 327-354 | DOI | Zbl
[10] Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Ann. Mat. Pura Appl., Volume 195 (2016) no. 1, pp. 273-291 | DOI | MR | Zbl
[11] Fractional elliptic equations with critical growth and singular nonlinearities, Electron. J. Differ. Equ., Volume 2016 (2016), 54, 23 pages | MR | Zbl
[12] The extremal solution for the fractional Laplacian, Calc. Var. Partial Differ. Equ., Volume 50 (2014) no. 3-4, pp. 723-750 | DOI | MR | Zbl
[13] Critical and subcritical fractional Trudinger-–Moser-type inequalities on
Cité par Sources :