Théorie des nombres
Harmonic number identities via polynomials with r-Lah coefficients
[Identités sur les nombres harmonique via des polynômes à coefficients r-Lah]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 5, pp. 535-550.

Dans cet article, des polynômes à coefficients faisant intervenir les nombres r-Lah sont utilisés pour établir plusieurs formules de sommation en fonction des coefficients binomiaux, des nombres de Stirling et des nombres harmoniques ou hyper-harmoniques. De plus, nous introduisons le nombre asymétrique-hyper-harmonique et nous étudions ses propriétés de base.

In this paper, polynomials whose coefficients involve r-Lah numbers are used to evaluate several summation formulae involving binomial coefficients, Stirling numbers, harmonic or hyperharmonic numbers. Moreover, skew-hyperharmonic number is introduced and its basic properties are investigated.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.53
Classification : 11B75, 11B68, 47E05, 11B73, 11B83
Kargın, Levent 1 ; Can, Mümün 1

1 Department of Mathematics, Akdeniz University, Antalya, Turkey
@article{CRMATH_2020__358_5_535_0,
     author = {Karg{\i}n, Levent and Can, M\"um\"un},
     title = {Harmonic number identities via polynomials with {r-Lah} coefficients},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {535--550},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {5},
     year = {2020},
     doi = {10.5802/crmath.53},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.53/}
}
TY  - JOUR
AU  - Kargın, Levent
AU  - Can, Mümün
TI  - Harmonic number identities via polynomials with r-Lah coefficients
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 535
EP  - 550
VL  - 358
IS  - 5
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.53/
DO  - 10.5802/crmath.53
LA  - en
ID  - CRMATH_2020__358_5_535_0
ER  - 
%0 Journal Article
%A Kargın, Levent
%A Can, Mümün
%T Harmonic number identities via polynomials with r-Lah coefficients
%J Comptes Rendus. Mathématique
%D 2020
%P 535-550
%V 358
%N 5
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.53/
%R 10.5802/crmath.53
%G en
%F CRMATH_2020__358_5_535_0
Kargın, Levent; Can, Mümün. Harmonic number identities via polynomials with r-Lah coefficients. Comptes Rendus. Mathématique, Tome 358 (2020) no. 5, pp. 535-550. doi : 10.5802/crmath.53. http://www.numdam.org/articles/10.5802/crmath.53/

[1] Ait-Amrane, Rachid; Belbachir, Hacène Non-integerness of class of hyperharmonic numbers, Ann. Math. Inform., Volume 37 (2010), pp. 7-11 | MR | Zbl

[2] Ait-Amrane, Rachid; Belbachir, Hacène Are the hyperharmonics integral, A partial answer via the small intervals containing primes, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 3-4, pp. 115-117 | DOI | MR | Zbl

[3] Belbachir, Hacène; Belkhir, Amine Cross recurrence relations for r-Lah numbers, Ars Comb., Volume 110 (2013), pp. 199-203 | MR | Zbl

[4] Benjamin, Arthur T.; Gaebler, David; Gaebler, Robert A combinatorial approach to hyperharmonic numbers, Integers, Volume 3 (2003), pp. 1-9 | MR | Zbl

[5] Benjamin, Arthur T.; Preston, Gregory O.; Quinn, Jennifer J. A Stirling encounter with harmonic numbers, Math. Mag., Volume 75 (2002) no. 2, pp. 95-103 | DOI | MR | Zbl

[6] Borwein, David H.; Bailey, Jonathan M.; Girgensohn, Roland Explicit evaluation of Euler sums, Proc. Edinb. Math. Soc., Volume 38 (1995) no. 2, pp. 277-294 | DOI | MR | Zbl

[7] Boyadzhiev, Khristo N. A series transformation formula and related polynomials, Int. J. Math. Math. Sci., Volume 23 (2005), pp. 3849-3866 | DOI | MR | Zbl

[8] Boyadzhiev, Khristo N. Harmonic number identities via Euler’s transform, J. Integer Seq., Volume 12 (2009) no. 6, 09.6.1, p. 8 | MR | Zbl

[9] Boyadzhiev, Khristo N. Series transformation formulas of Euler type, Hadamard product of series, and harmonic number identities, Indian J. Pure Appl. Math., Volume 42 (2011) no. 5, pp. 371-386 | DOI | MR | Zbl

[10] Boyadzhiev, Khristo N. Power series with skew-harmonic numbers, dilogarithms, and double integrals, Tatra Mt. Math. Publ., Volume 56 (2013), pp. 93-108 | MR | Zbl

[11] Boyadzhiev, Khristo N. Binomial transform and the backward difference, Adv. Appl. Discrete Math., Volume 13 (2014) no. 1, pp. 43-63 | MR | Zbl

[12] Boyadzhiev, Khristo N. Notes on the Binomial Transform. Theory and table with appendix on Stirling transform, World Scientific, 2018 | Zbl

[13] Boyadzhiev, Khristo N.; Dil, Ayhan Geometric polynomials: properties and applications to series with zeta values, Anal. Math., Volume 42 (2016) no. 3, pp. 203-224 | DOI | MR

[14] Broder, Andrei Z. The r-Stirling numbers, Discrete Math., Volume 49 (1984), pp. 241-259 | DOI | Zbl

[15] Can, Mümün; Dağli, Muhammet Cihat Extended Bernoulli and Stirling matrices and related combinatorial identities, Linear Algebra Appl., Volume 444 (2014), pp. 114-131 | DOI | MR | Zbl

[16] Cereceda, José Luis An introduction to hyperharmonic numbers (classroom note), Int. J. Math. Educ. Sci. Technol., Volume 46 (2015) no. 3, pp. 461-469 | DOI | MR | Zbl

[17] Choi, Junesang Finite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers, J. Inequal. Appl., Volume 1 (2013), 49 | MR | Zbl

[18] Chu, Wenchang Summation formulae involving harmonic numbers, Filomat, Volume 26 (2012) no. 1, pp. 143-152 | MR | Zbl

[19] Chu, Wenchang; Livia, De Donno Hypergeometric series and harmonic number identities, Adv. Appl. Math., Volume 34 (2005) no. 1, pp. 123-137 | MR | Zbl

[20] Conway, John H.; Guy, Richard K. The book of numbers, Springer, 1996 | Zbl

[21] Dil, Ayhan; Boyadzhiev, Khristo N. Euler sums of hyperharmonic numbers, J. Number Theory, Volume 147 (2015), pp. 490-498 | MR | Zbl

[22] Dil, Ayhan; Kurt, Veli Polynomials related to harmonic numbers and evaluation of harmonic number series II, Appl. Anal. Discrete Math., Volume 5 (2011) no. 2, pp. 212-229 | MR | Zbl

[23] Dil, Ayhan; Kurt, Veli Polynomials related to harmonic numbers and evaluation of harmonic number series I, Integers, Volume 12 (2012), a38, pp. 1-18 | MR | Zbl

[24] Dil, Ayhan; Mező, István A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comput., Volume 206 (2008) no. 2, pp. 942-951 | MR | Zbl

[25] Dil, Ayhan; Mező, István; Cenkci, Mehmet Evaluation of Euler-like sums via Hurwitz zeta values, Turk. J. Math., Volume 41 (2017) no. 6, pp. 1640-1655 | MR | Zbl

[26] Dil, Ayhan; Muniroğlu, Erkan Applications of derivative and difference operators on some sequences (2019) (https://arxiv.org/abs/1910.01876)

[27] Flajolet, Philippe; Salvy, Bruno Euler sums and contour integral representations, Exp. Math., Volume 7 (1998) no. 1, pp. 15-35 | DOI | MR | Zbl

[28] Göral, Haydar; Sertbaş, Doğa Can Almost all hyperharmonic numbers are not integers, J. Number Theory, Volume 147 (2017), pp. 495-526 | DOI | MR | Zbl

[29] Goyal, Som Prakash; Laddha, R. K. On the generalized Riemann zeta functions and the generalized Lambert transform, Ganita Sandesh, Volume 11 (1997) no. 2, pp. 99-108 | MR | Zbl

[30] Guo, Bai-Ni; Qi, Feng Some integral representations and properties of Lah numbers, J. Algebra Number Theory Acad., Volume 4 (2014) no. 3, pp. 77-87

[31] Kamano, Ken Dirichlet series associated with hyperharmonic numbers, Mem. Osaka Inst. Tech., Volume 56 (2011) no. 2, pp. 11-15 | MR

[32] Kargin, Levent Some formulae for products of geometric polynomials with applications, J. Integer Seq., Volume 20 (2017) no. 4, Article 17.4.4. | MR | Zbl

[33] Kargin, Levent; Çekim, Bayram Higher order generalized geometric polynomials, Turk. J. Math., Volume 42 (2018) no. 3, pp. 887-903 | MR | Zbl

[34] Kargin, Levent; Corcino, Roberto B. Generalization of Mellin derivative and its applications, Integral Transforms Spec. Funct., Volume 27 (2016) no. 8, pp. 620-631 | DOI | MR | Zbl

[35] Kellner, Bernd C. Identities between polynomials related to Stirling and harmonic numbers, Integers, Volume 14 (2014), A54 | MR | Zbl

[36] Knopf, Peter M. The operator (xd dx) n and its application to series, Math. Mag., Volume 76 (2003) no. 5, pp. 364-371 | DOI

[37] Mező, István About the non-integer property of hyperharmonic numbers, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., Volume 50 (2007), pp. 13-20 | MR | Zbl

[38] Mező, István Analytic extension of hyperharmonic numbers, Online J. Anal. Comb., Volume 4 (2009), 1 | MR | Zbl

[39] Mező, István; Dil, Ayhan Euler–Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence, Cent. Eur. J. Math., Volume 7 (2009) no. 2, pp. 310-321 | MR | Zbl

[40] Mező, István; Dil, Ayhan Hyperharmonic series involving Hurwitz zeta function, J. Number Theory, Volume 130 (2010) no. 2, pp. 360-369 | DOI | MR | Zbl

[41] Nyul, Gábor; Rácz, Gabriella The r-Lah numbers, Discrete Math., Volume 338 (2015) no. 10, pp. 1660-1666 | DOI | MR | Zbl

[42] Paule, Peter; Schneider, Carsten Computer proofs of a new family of harmonic number identities, Adv. Appl. Math., Volume 31 (2003) no. 2, pp. 359-378 | DOI | MR | Zbl

[43] Petojević, Aleksandar A note about the Pochhammer symbol, Mathematica Moravica, Volume 12 (2008) no. 1, pp. 37-42 | DOI | MR | Zbl

[44] Rao, R. Sita Rama Chandra; Sarma, A. Siva Rama Some identities involving the Riemann zeta function, Indian J. Pure Appl. Math., Volume 10 (1979), pp. 602-607 | MR | Zbl

[45] Sándor, József; Crstici, Borislav Handbook of number theory. Vol II, Kluwer Academic Publishers, 2004 | Zbl

[46] Sebaoui, Madjid; Laissaoui, Diffalah; Guettai, G.; Rahmani, Mourad On s-Lah polynomials, Ars Comb., Volume 142 (2019), pp. 111-118 | MR | Zbl

[47] Spieß, Jürgen Some identities involving harmonic numbers, Math. Comput., Volume 55 (1990) no. 132, pp. 839-863 | DOI | MR | Zbl

[48] Spivey, Michael Z. Combinatorial sums and finite differences, Discrete Math., Volume 307 (2007) no. 24, pp. 3130-3146 | DOI | MR | Zbl

[49] Theisinger, Leopold Bemerkung über die harmonische Reihe, Monatsh. Math. Phys., Volume 26 (1915), pp. 132-134 | DOI | Zbl

[50] Xu, Ce Euler sums of generalized hyperharmonic numbers, J. Korean Math. Soc., Volume 55 (2018) no. 5, pp. 1207-1220 | MR | Zbl

[51] Yan, Qinglun; Liu, Yaqing Harmonic number identities involving telescoping method and derivative operator, Integral Transforms Spec. Funct., Volume 28 (2017) no. 10, pp. 703-709 | MR | Zbl

Cité par Sources :