Analyse complexe, Équations aux dérivées partielles
On the canonical solution of ¯ on polydisks
Comptes Rendus. Mathématique, Tome 358 (2020) no. 5, pp. 523-528.

We observe that the recent result of Chen–McNeal [6] implies that the canonical solution operator satisfies Sobolev estimates with a loss of n-2 derivatives on the polydisk Δ n and particularly is exact regular on Δ 2 .

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.51
Jin, Muzhi 1 ; Yuan, Yuan 1

1 Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA
@article{CRMATH_2020__358_5_523_0,
     author = {Jin, Muzhi and Yuan, Yuan},
     title = {On the canonical solution of $\protect \,\protect \,\protect \overline{\protect \!\partial }$ on polydisks},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {523--528},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {5},
     year = {2020},
     doi = {10.5802/crmath.51},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.51/}
}
TY  - JOUR
AU  - Jin, Muzhi
AU  - Yuan, Yuan
TI  - On the canonical solution of $\protect \,\protect \,\protect \overline{\protect \!\partial }$ on polydisks
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 523
EP  - 528
VL  - 358
IS  - 5
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.51/
DO  - 10.5802/crmath.51
LA  - en
ID  - CRMATH_2020__358_5_523_0
ER  - 
%0 Journal Article
%A Jin, Muzhi
%A Yuan, Yuan
%T On the canonical solution of $\protect \,\protect \,\protect \overline{\protect \!\partial }$ on polydisks
%J Comptes Rendus. Mathématique
%D 2020
%P 523-528
%V 358
%N 5
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.51/
%R 10.5802/crmath.51
%G en
%F CRMATH_2020__358_5_523_0
Jin, Muzhi; Yuan, Yuan. On the canonical solution of $\protect \,\protect \,\protect \overline{\protect \!\partial }$ on polydisks. Comptes Rendus. Mathématique, Tome 358 (2020) no. 5, pp. 523-528. doi : 10.5802/crmath.51. http://www.numdam.org/articles/10.5802/crmath.51/

[1] Ahlfors, Lars V. Lectures on quasiconformal mappings, University Lecture Series, 38, American Mathematical Society, 2006 (with supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard) | MR | Zbl

[2] Boas, Harold P. Holomorphic reproducing kernels in Reinhardt domains, Pac. J. Math., Volume 112 (1984) no. 2, pp. 273-292 | DOI | MR | Zbl

[3] Chakrabarti, Debraj; Laurent-Thiébaut, Christine; Shaw, Mei-Chi On the L 2 -Dolbeault cohomology of annuli, Indiana Univ. Math. J., Volume 67 (2018) no. 2, pp. 831-857 | DOI | MR | Zbl

[4] Chakrabarti, Debraj; Shaw, Mei-Chi The Cauchy–Riemann equations on product domains, Math. Ann., Volume 349 (2011) no. 4, pp. 977-998 | DOI | MR | Zbl

[5] Chen, Liwei Weighted Sobolev regularity of the Bergman projection on the Hartogs triangle, Pac. J. Math., Volume 288 (2017) no. 2, pp. 307-318 | DOI | MR | Zbl

[6] Chen, Liwei; McNeal, Jeffery D. Product domains, Multi-Cauchy transforms, and the ¯ equation, Adv. Math., Volume 360 (2020), 106930, 42 pages | MR | Zbl

[7] Chen, Liwei; McNeal, Jeffery D. A solution operator for ¯ on the Hartogs triangle and L p estimates, Math. Ann., Volume 376 (2020) no. 1-2, pp. 407-430 | DOI | MR | Zbl

[8] Edholm, Luke D.; McNeal, Jeffery D. Sobolev mapping of some holomorphic projections, J. Geom. Anal., Volume 30 (2020) no. 2, pp. 1293-1311 | DOI | MR | Zbl

[9] Fu, Siqi; Straube, Emil J. Compactness of the ¯-Neumann problem on convex domains, J. Funct. Anal., Volume 159 (1998) no. 2, pp. 629-641 | MR | Zbl

[10] Lehto, Olli; Virtanen, K. I. Quasiconformal mappings in the plane. Translated from the German by K. W. Lucas, Grundlehren der Mathematischen Wissenschaften, 126, Springer, 1973 | Zbl

[11] Prats, Martí; Tolsa, Xavier A T(P) theorem for Sobolev spaces on domains, J. Funct. Anal., Volume 268 (2015) no. 10, pp. 2946-2989 | DOI | MR | Zbl

[12] Shaw, Mei-Chi The Hartogs triangle in complex analysis, Geometry and topology of submanifolds and currents (Contemporary Mathematics), Volume 646, American Mathematical Society, 2015, pp. 105-115 | MR | Zbl

[13] Straube, Emil J. Exact regularity of Bergman, Szegö and Sobolev space projections in nonpseudoconvex domains, Math. Z., Volume 192 (1986) no. 1, pp. 117-128 | DOI | Zbl

[14] Straube, Emil J. Lectures on the L 2 -Sobolev theory of the ¯-Neumann problem, ESI Lectures in Mathematics and Physics, 7, European Mathematical Society, 2010 | Zbl

Cité par Sources :