We observe that the recent result of Chen–McNeal [6] implies that the canonical solution operator satisfies Sobolev estimates with a loss of derivatives on the polydisk and particularly is exact regular on .
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_5_523_0, author = {Jin, Muzhi and Yuan, Yuan}, title = {On the canonical solution of $\protect \,\protect \,\protect \overline{\protect \!\partial }$ on polydisks}, journal = {Comptes Rendus. Math\'ematique}, pages = {523--528}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {5}, year = {2020}, doi = {10.5802/crmath.51}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.51/} }
TY - JOUR AU - Jin, Muzhi AU - Yuan, Yuan TI - On the canonical solution of $\protect \,\protect \,\protect \overline{\protect \!\partial }$ on polydisks JO - Comptes Rendus. Mathématique PY - 2020 SP - 523 EP - 528 VL - 358 IS - 5 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.51/ DO - 10.5802/crmath.51 LA - en ID - CRMATH_2020__358_5_523_0 ER -
%0 Journal Article %A Jin, Muzhi %A Yuan, Yuan %T On the canonical solution of $\protect \,\protect \,\protect \overline{\protect \!\partial }$ on polydisks %J Comptes Rendus. Mathématique %D 2020 %P 523-528 %V 358 %N 5 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.51/ %R 10.5802/crmath.51 %G en %F CRMATH_2020__358_5_523_0
Jin, Muzhi; Yuan, Yuan. On the canonical solution of $\protect \,\protect \,\protect \overline{\protect \!\partial }$ on polydisks. Comptes Rendus. Mathématique, Tome 358 (2020) no. 5, pp. 523-528. doi : 10.5802/crmath.51. http://www.numdam.org/articles/10.5802/crmath.51/
[1] Lectures on quasiconformal mappings, University Lecture Series, 38, American Mathematical Society, 2006 (with supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard) | MR | Zbl
[2] Holomorphic reproducing kernels in Reinhardt domains, Pac. J. Math., Volume 112 (1984) no. 2, pp. 273-292 | DOI | MR | Zbl
[3] On the -Dolbeault cohomology of annuli, Indiana Univ. Math. J., Volume 67 (2018) no. 2, pp. 831-857 | DOI | MR | Zbl
[4] The Cauchy–Riemann equations on product domains, Math. Ann., Volume 349 (2011) no. 4, pp. 977-998 | DOI | MR | Zbl
[5] Weighted Sobolev regularity of the Bergman projection on the Hartogs triangle, Pac. J. Math., Volume 288 (2017) no. 2, pp. 307-318 | DOI | MR | Zbl
[6] Product domains, Multi-Cauchy transforms, and the equation, Adv. Math., Volume 360 (2020), 106930, 42 pages | MR | Zbl
[7] A solution operator for on the Hartogs triangle and estimates, Math. Ann., Volume 376 (2020) no. 1-2, pp. 407-430 | DOI | MR | Zbl
[8] Sobolev mapping of some holomorphic projections, J. Geom. Anal., Volume 30 (2020) no. 2, pp. 1293-1311 | DOI | MR | Zbl
[9] Compactness of the -Neumann problem on convex domains, J. Funct. Anal., Volume 159 (1998) no. 2, pp. 629-641 | MR | Zbl
[10] Quasiconformal mappings in the plane. Translated from the German by K. W. Lucas, Grundlehren der Mathematischen Wissenschaften, 126, Springer, 1973 | Zbl
[11] A T(P) theorem for Sobolev spaces on domains, J. Funct. Anal., Volume 268 (2015) no. 10, pp. 2946-2989 | DOI | MR | Zbl
[12] The Hartogs triangle in complex analysis, Geometry and topology of submanifolds and currents (Contemporary Mathematics), Volume 646, American Mathematical Society, 2015, pp. 105-115 | MR | Zbl
[13] Exact regularity of Bergman, Szegö and Sobolev space projections in nonpseudoconvex domains, Math. Z., Volume 192 (1986) no. 1, pp. 117-128 | DOI | Zbl
[14] Lectures on the -Sobolev theory of the -Neumann problem, ESI Lectures in Mathematics and Physics, 7, European Mathematical Society, 2010 | Zbl
Cité par Sources :