Méthodes homologiques
Relative global dimensions and stable homotopy categories
Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 379-392.

In this paper we study the finiteness of global Gorenstein AC-homological dimensions for rings, and answer the questions posed by Becerril, Mendoza, Pérez and Santiago. As an application, we show that any left (or right) coherent and left Gorenstein ring has a projective and injective stable homotopy category, which improves the known result by Beligiannis.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.50
Classification : 18G25, 18G20
Liang, Li 1 ; Wang, Junpeng 2

1 School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China
2 College of Economics, Northwest Normal University, Lanzhou 730070, China
@article{CRMATH_2020__358_3_379_0,
     author = {Liang, Li and Wang, Junpeng},
     title = {Relative global dimensions and stable homotopy categories},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {379--392},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {3},
     year = {2020},
     doi = {10.5802/crmath.50},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.50/}
}
TY  - JOUR
AU  - Liang, Li
AU  - Wang, Junpeng
TI  - Relative global dimensions and stable homotopy categories
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 379
EP  - 392
VL  - 358
IS  - 3
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.50/
DO  - 10.5802/crmath.50
LA  - en
ID  - CRMATH_2020__358_3_379_0
ER  - 
%0 Journal Article
%A Liang, Li
%A Wang, Junpeng
%T Relative global dimensions and stable homotopy categories
%J Comptes Rendus. Mathématique
%D 2020
%P 379-392
%V 358
%N 3
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.50/
%R 10.5802/crmath.50
%G en
%F CRMATH_2020__358_3_379_0
Liang, Li; Wang, Junpeng. Relative global dimensions and stable homotopy categories. Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 379-392. doi : 10.5802/crmath.50. http://www.numdam.org/articles/10.5802/crmath.50/

[1] Auslander, Maurice; Bridger, Mark Stable module theory, Memoirs of the American Mathematical Society, 94, American Mathematical Society, 1969 | MR | Zbl

[2] Becerril, Víctor; Mendoza, Octavio; Pérez, Marco A.; Santiago, Valente Frobenius pairs in abelian categories. Correspondences with cotorsion pairs, exact model categories, and Auslander–Buchweitz contexts, J. Homotopy Relat. Struct., Volume 14 (2019) no. 1, pp. 1-50 | DOI | MR | Zbl

[3] Beligiannis, Apostolos The homological theory of contravariantly finite subcategories: Auslander–Buchweitz contexts, Gorenstein categories and (co-)stabilization, Commun. Algebra, Volume 28 (2000) no. 10, pp. 4547-4596 | DOI | MR | Zbl

[4] Beligiannis, Apostolos Homotopy theory of modules and Gorenstein rings, Math. Scand., Volume 89 (2001) no. 1, pp. 5-45 | DOI | MR | Zbl

[5] Beligiannis, Apostolos; Reiten, Idun Homological and homotopical aspects of torsion theories, Memoirs of the American Mathematical Society, 883, American Mathematical Society, 2007, viii+207 pages | MR | Zbl

[6] Bennis, Driss Rings over which the class of Gorenstein flat modules is closed under extensions, Commun. Algebra, Volume 37 (2009) no. 3, pp. 855-868 | DOI | MR | Zbl

[7] Bennis, Driss; Mahdou, Najib Global Gorenstein dimensions, Proc. Am. Math. Soc., Volume 138 (2010) no. 2, pp. 461-465 | DOI | MR | Zbl

[8] Bravo, Daniel; Estrada, Sergio; Iacob, Alina FP n -injective, FP n -flat covers and preenvelopes, and Gorenstein AC-flat covers, Algebra Colloq., Volume 25 (2018) no. 2, pp. 319-334 | DOI | MR | Zbl

[9] Bravo, Daniel; Gillespie, James; Hovey, Mark The stable module category of a general ring (2014) (https://arxiv.org/abs/1405.5768)

[10] Buchweitz, Ragnar-Olaf Maximal Cohen–Macaulay modules and Tate-cohomology over Gorenstein rings, 1986 University of Hannover (Germany), http://hdl.handle.net/1807/16682

[11] Chen, Xiao-Wu Relative singularity categories and Gorenstein-projective modules, Math. Nachr., Volume 284 (2011) no. 2-3, pp. 199-212 | DOI | MR | Zbl

[12] Christensen, Lars Winther; Estrada, Sergio; Thompson, Peder Homotopy categories of totally acyclic complexes with applications to the flat-cotorsion theory (2019) (https://arxiv.org/abs/1812.04402v2, to appear in Contemporary Mathematics)

[13] Di, Zhenxing; Liu, Zhongkui; Yang, Xiaoyan; Zhang, Xiaoxiang Triangulated equivalence between a homotopy category and a triangulated quotient category, J. Algebra, Volume 506 (2018), pp. 297-321 | MR | Zbl

[14] Emmanouil, Ioannis On the finiteness of Gorenstein homological dimensions, J. Algebra, Volume 372 (2012), pp. 376-396 | DOI | MR | Zbl

[15] Enochs, Edgar E.; Jenda, Overtoun M. G. Gorenstein injective and projective modules, Math. Z., Volume 220 (1995) no. 4, pp. 611-633 | DOI | MR | Zbl

[16] Enochs, Edgar E.; Jenda, Overtoun M. G.; Torrecillas, Blas Gorenstein flat modules, J. Nanjing Univ., Math. Biq., Volume 10 (1993) no. 1, pp. 1-9 | MR | Zbl

[17] Enochs, Edgar E.; Jenda, Overtoun M. G.; Xu, Jinzhong Orthogonality in the category of complexes, Math. J. Okayama Univ., Volume 38 (1996), pp. 25-46 | MR | Zbl

[18] Estrada, Sergio; Gillespie, James The projective stable category of a coherent scheme, Proc. R. Soc. Edinb., Sect. A, Math., Volume 149 (2019) no. 1, pp. 15-43 | DOI | MR | Zbl

[19] Estrada, Sergio; Iacob, Alina; Pérez, Marco A. Model structures and relative Gorenstein flat modules and chain complexes (2018) (https://arxiv.org/abs/1709.00658v2, to appear in Contemporary Mathematics)

[20] Gillespie, James The flat model structure on Ch (R), Trans. Am. Math. Soc., Volume 356 (2004) no. 8, pp. 3369-3390 | DOI | MR | Zbl

[21] Gillespie, James Gorenstein complexes and recollements from cotorsion pairs, Adv. Math., Volume 291 (2016), pp. 859-911 | DOI | MR | Zbl

[22] Gillespie, James Hereditary abelian model categories, Bull. Lond. Math. Soc., Volume 48 (2016) no. 6, pp. 895-922 | DOI | MR | Zbl

[23] Gillespie, James On Ding injective, Ding projective and Ding flat modules and complexes, Rocky Mt. J. Math., Volume 47 (2017) no. 8, pp. 2641-2673 | DOI | MR | Zbl

[24] Gillespie, James On the homotopy category of AC-injective complexes, Front. Math. China, Volume 12 (2017) no. 1, pp. 97-115 | DOI | MR | Zbl

[25] Gillespie, James AC-Gorenstein rings and their stable module categories, J. Aust. Math. Soc., Volume 107 (2019) no. 2, pp. 181-198 | DOI | MR | Zbl

[26] Hovey, Mark Cotorsion pairs, model category structures, and representation theory, Math. Z., Volume 241 (2002) no. 3, pp. 553-592 | DOI | MR | Zbl

[27] Kirkman, Ellen; Kuzmanovich, James On the global dimension of fibre products, Pac. J. Math., Volume 134 (1988) no. 1, pp. 121-132 | DOI | MR | Zbl

[28] Krause, Henning Smashing subcategories and the telescope conjecture—an algebraic approach, Invent. Math., Volume 139 (2000) no. 1, pp. 99-133 | DOI | MR | Zbl

[29] Krause, Henning The stable derived category of a Noetherian scheme, Compos. Math., Volume 141 (2005) no. 5, pp. 1128-1162 | DOI | MR | Zbl

[30] Mao, Lixin; Ding, Nanqing The cotorsion dimension of modules and rings, Abelian groups, rings, modules, and homological algebra (Lecture Notes in Pure and Applied Mathematics), Volume 249, Chapman & Hall/CRC, 2006, pp. 217-233 | MR | Zbl

[31] Orlov, Dmitri Triangulated categories of singularities and D-branes in Landau–Ginzburg models, Tr. Mat. Inst. Steklova, Volume 246 (2004), pp. 240-262 | MR | Zbl

[32] Šaroch, Jan; Šťovíček, Jan Singular compactness and definability for Σ-cotorsion and Gorenstein modules, Sel. Math., New Ser., Volume 26 (2020) no. 2, 23, 40 pages | MR | Zbl

[33] Wang, Junpeng Ding projective dimension of Gorenstein flat modules, Bull. Korean Math. Soc., Volume 54 (2017) no. 6, pp. 1935-1950 | MR | Zbl

[34] Yang, Xiaoyan; Ding, Nanqing On a question of Gillespie, Forum Math., Volume 27 (2015) no. 6, pp. 3205-3231 | MR | Zbl

Cité par Sources :