In this paper we study the finiteness of global Gorenstein AC-homological dimensions for rings, and answer the questions posed by Becerril, Mendoza, Pérez and Santiago. As an application, we show that any left (or right) coherent and left Gorenstein ring has a projective and injective stable homotopy category, which improves the known result by Beligiannis.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_3_379_0, author = {Liang, Li and Wang, Junpeng}, title = {Relative global dimensions and stable homotopy categories}, journal = {Comptes Rendus. Math\'ematique}, pages = {379--392}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {3}, year = {2020}, doi = {10.5802/crmath.50}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.50/} }
TY - JOUR AU - Liang, Li AU - Wang, Junpeng TI - Relative global dimensions and stable homotopy categories JO - Comptes Rendus. Mathématique PY - 2020 SP - 379 EP - 392 VL - 358 IS - 3 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.50/ DO - 10.5802/crmath.50 LA - en ID - CRMATH_2020__358_3_379_0 ER -
%0 Journal Article %A Liang, Li %A Wang, Junpeng %T Relative global dimensions and stable homotopy categories %J Comptes Rendus. Mathématique %D 2020 %P 379-392 %V 358 %N 3 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.50/ %R 10.5802/crmath.50 %G en %F CRMATH_2020__358_3_379_0
Liang, Li; Wang, Junpeng. Relative global dimensions and stable homotopy categories. Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 379-392. doi : 10.5802/crmath.50. http://www.numdam.org/articles/10.5802/crmath.50/
[1] Stable module theory, Memoirs of the American Mathematical Society, 94, American Mathematical Society, 1969 | MR | Zbl
[2] Frobenius pairs in abelian categories. Correspondences with cotorsion pairs, exact model categories, and Auslander–Buchweitz contexts, J. Homotopy Relat. Struct., Volume 14 (2019) no. 1, pp. 1-50 | DOI | MR | Zbl
[3] The homological theory of contravariantly finite subcategories: Auslander–Buchweitz contexts, Gorenstein categories and (co-)stabilization, Commun. Algebra, Volume 28 (2000) no. 10, pp. 4547-4596 | DOI | MR | Zbl
[4] Homotopy theory of modules and Gorenstein rings, Math. Scand., Volume 89 (2001) no. 1, pp. 5-45 | DOI | MR | Zbl
[5] Homological and homotopical aspects of torsion theories, Memoirs of the American Mathematical Society, 883, American Mathematical Society, 2007, viii+207 pages | MR | Zbl
[6] Rings over which the class of Gorenstein flat modules is closed under extensions, Commun. Algebra, Volume 37 (2009) no. 3, pp. 855-868 | DOI | MR | Zbl
[7] Global Gorenstein dimensions, Proc. Am. Math. Soc., Volume 138 (2010) no. 2, pp. 461-465 | DOI | MR | Zbl
[8] -injective, -flat covers and preenvelopes, and Gorenstein AC-flat covers, Algebra Colloq., Volume 25 (2018) no. 2, pp. 319-334 | DOI | MR | Zbl
[9] The stable module category of a general ring (2014) (https://arxiv.org/abs/1405.5768)
[10] Maximal Cohen–Macaulay modules and Tate-cohomology over Gorenstein rings, 1986 University of Hannover (Germany), http://hdl.handle.net/1807/16682
[11] Relative singularity categories and Gorenstein-projective modules, Math. Nachr., Volume 284 (2011) no. 2-3, pp. 199-212 | DOI | MR | Zbl
[12] Homotopy categories of totally acyclic complexes with applications to the flat-cotorsion theory (2019) (https://arxiv.org/abs/1812.04402v2, to appear in Contemporary Mathematics)
[13] Triangulated equivalence between a homotopy category and a triangulated quotient category, J. Algebra, Volume 506 (2018), pp. 297-321 | MR | Zbl
[14] On the finiteness of Gorenstein homological dimensions, J. Algebra, Volume 372 (2012), pp. 376-396 | DOI | MR | Zbl
[15] Gorenstein injective and projective modules, Math. Z., Volume 220 (1995) no. 4, pp. 611-633 | DOI | MR | Zbl
[16] Gorenstein flat modules, J. Nanjing Univ., Math. Biq., Volume 10 (1993) no. 1, pp. 1-9 | MR | Zbl
[17] Orthogonality in the category of complexes, Math. J. Okayama Univ., Volume 38 (1996), pp. 25-46 | MR | Zbl
[18] The projective stable category of a coherent scheme, Proc. R. Soc. Edinb., Sect. A, Math., Volume 149 (2019) no. 1, pp. 15-43 | DOI | MR | Zbl
[19] Model structures and relative Gorenstein flat modules and chain complexes (2018) (https://arxiv.org/abs/1709.00658v2, to appear in Contemporary Mathematics)
[20] The flat model structure on , Trans. Am. Math. Soc., Volume 356 (2004) no. 8, pp. 3369-3390 | DOI | MR | Zbl
[21] Gorenstein complexes and recollements from cotorsion pairs, Adv. Math., Volume 291 (2016), pp. 859-911 | DOI | MR | Zbl
[22] Hereditary abelian model categories, Bull. Lond. Math. Soc., Volume 48 (2016) no. 6, pp. 895-922 | DOI | MR | Zbl
[23] On Ding injective, Ding projective and Ding flat modules and complexes, Rocky Mt. J. Math., Volume 47 (2017) no. 8, pp. 2641-2673 | DOI | MR | Zbl
[24] On the homotopy category of AC-injective complexes, Front. Math. China, Volume 12 (2017) no. 1, pp. 97-115 | DOI | MR | Zbl
[25] AC-Gorenstein rings and their stable module categories, J. Aust. Math. Soc., Volume 107 (2019) no. 2, pp. 181-198 | DOI | MR | Zbl
[26] Cotorsion pairs, model category structures, and representation theory, Math. Z., Volume 241 (2002) no. 3, pp. 553-592 | DOI | MR | Zbl
[27] On the global dimension of fibre products, Pac. J. Math., Volume 134 (1988) no. 1, pp. 121-132 | DOI | MR | Zbl
[28] Smashing subcategories and the telescope conjecture—an algebraic approach, Invent. Math., Volume 139 (2000) no. 1, pp. 99-133 | DOI | MR | Zbl
[29] The stable derived category of a Noetherian scheme, Compos. Math., Volume 141 (2005) no. 5, pp. 1128-1162 | DOI | MR | Zbl
[30] The cotorsion dimension of modules and rings, Abelian groups, rings, modules, and homological algebra (Lecture Notes in Pure and Applied Mathematics), Volume 249, Chapman & Hall/CRC, 2006, pp. 217-233 | MR | Zbl
[31] Triangulated categories of singularities and D-branes in Landau–Ginzburg models, Tr. Mat. Inst. Steklova, Volume 246 (2004), pp. 240-262 | MR | Zbl
[32] Singular compactness and definability for -cotorsion and Gorenstein modules, Sel. Math., New Ser., Volume 26 (2020) no. 2, 23, 40 pages | MR | Zbl
[33] Ding projective dimension of Gorenstein flat modules, Bull. Korean Math. Soc., Volume 54 (2017) no. 6, pp. 1935-1950 | MR | Zbl
[34] On a question of Gillespie, Forum Math., Volume 27 (2015) no. 6, pp. 3205-3231 | MR | Zbl
Cité par Sources :