Let be an unbiased estimate of an unknown . Given a function , we show how to choose a function such that for , . We illustrate this with for a given constant . For and normal, this leads to the convolution equation .
Accepté le :
Publié le :
@article{CRMATH_2020__358_6_641_0, author = {Withers, Christopher S. and Nadarajah, Saralees}, title = {A note on bias reduction}, journal = {Comptes Rendus. Math\'ematique}, pages = {641--644}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {6}, year = {2020}, doi = {10.5802/crmath.49}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.49/} }
TY - JOUR AU - Withers, Christopher S. AU - Nadarajah, Saralees TI - A note on bias reduction JO - Comptes Rendus. Mathématique PY - 2020 SP - 641 EP - 644 VL - 358 IS - 6 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.49/ DO - 10.5802/crmath.49 LA - en ID - CRMATH_2020__358_6_641_0 ER -
Withers, Christopher S.; Nadarajah, Saralees. A note on bias reduction. Comptes Rendus. Mathématique, Tome 358 (2020) no. 6, pp. 641-644. doi : 10.5802/crmath.49. http://www.numdam.org/articles/10.5802/crmath.49/
[1] Handbook of mathematical functions with formulas, graphs and mathematical tables (Abramowitz, Milton; Stegun, Irene A., eds.), Applied Mathematics Series, 55, U.S. Department of Commerce, 1964 | MR | Zbl
[2] Advanced combinatorics: the art of finite and infinite expansions, Springer, 1974 | Zbl
[3] Improving bias in kernel density estimation, Stat. Probab. Lett., Volume 94 (2014), pp. 106-112 | DOI | MR | Zbl
[4] Analytic bias reduction for -sample functionals, Sankhyā, Ser. A, Volume 70 (2008) no. 2, pp. 186-222 | MR | Zbl
[5] The bias and skewness of -estimators in regression, Electron. J. Stat., Volume 4 (2010), pp. 1-14 | DOI | MR | Zbl
[6] Bias-reduced estimates for skewness, kurtosis, -skewness and -kurtosis, J. Stat. Plann. Inference, Volume 141 (2011) no. 12, pp. 3839-3861 | DOI | MR | Zbl
[7] Bias reduction for the ratio of means, J. Stat. Comput. Simulation, Volume 81 (2011) no. 12, pp. 1799-1816 | DOI | MR | Zbl
[8] Estimates of low bias for the multivariate normal, Stat. Probab. Lett., Volume 81 (2011) no. 11, pp. 1635-1647 | DOI | MR | Zbl
[9] Reduction of bias and skewness with applications to second order accuracy, Stat. Methods Appl., Volume 20 (2011) no. 4, pp. 439-450 | DOI | MR | Zbl
[10] Nonparametric estimates of low bias, REVSTAT, Volume 10 (2012) no. 2, pp. 229-283 | MR | Zbl
[11] Calibration with low bias, Stat. Pap., Volume 54 (2013) no. 2, pp. 371-379 | DOI | MR | Zbl
[12] Delta and jackknife estimators with low bias for functions of binomial and multinomial parameters, J. Multivariate Anal., Volume 118 (2013), pp. 138-147 | DOI | MR | Zbl
[13] Density estimates of low bias, Metrika, Volume 76 (2013) no. 3, pp. 357-379 | DOI | MR | Zbl
[14] Bias reduction when data are rounded, Stat. Neerl., Volume 69 (2015) no. 3, pp. 236-271 | DOI | MR
Cité par Sources :