In this paper, we establish the existence of smooth center manifolds for a class of nonautonomous differential equations with non-instantaneous impulses under sufficiently small perturbations of the linear homogeneous part which has a nonuniform exponential trichotomy. In addition, we show the smoothness of center manifolds outside the jumping times.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_3_341_0, author = {Li, Mengmeng and Wang, JinRong and O{\textquoteright}Regan, Donal and Fe\v{c}kan, Michal}, title = {Center {Manifolds} for {Non-instantaneous} {Impulsive} {Equations} {Under} {Nonuniform} {Hyperbolicity}}, journal = {Comptes Rendus. Math\'ematique}, pages = {341--364}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {3}, year = {2020}, doi = {10.5802/crmath.47}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.47/} }
TY - JOUR AU - Li, Mengmeng AU - Wang, JinRong AU - O’Regan, Donal AU - Fečkan, Michal TI - Center Manifolds for Non-instantaneous Impulsive Equations Under Nonuniform Hyperbolicity JO - Comptes Rendus. Mathématique PY - 2020 SP - 341 EP - 364 VL - 358 IS - 3 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.47/ DO - 10.5802/crmath.47 LA - en ID - CRMATH_2020__358_3_341_0 ER -
%0 Journal Article %A Li, Mengmeng %A Wang, JinRong %A O’Regan, Donal %A Fečkan, Michal %T Center Manifolds for Non-instantaneous Impulsive Equations Under Nonuniform Hyperbolicity %J Comptes Rendus. Mathématique %D 2020 %P 341-364 %V 358 %N 3 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.47/ %R 10.5802/crmath.47 %G en %F CRMATH_2020__358_3_341_0
Li, Mengmeng; Wang, JinRong; O’Regan, Donal; Fečkan, Michal. Center Manifolds for Non-instantaneous Impulsive Equations Under Nonuniform Hyperbolicity. Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 341-364. doi : 10.5802/crmath.47. http://www.numdam.org/articles/10.5802/crmath.47/
[1] Theory of Impulsive Differential Equations, Series on Advances in Mathematics for Applied Sciences, 28, World Scientific, 1995
[2] Oscillation Theory of Impulsive Differential Equations, International Publications, 1998 | Zbl
[3] Smoothness of invariant manifolds for nonautonomous equations, Commun. Math. Phys., Volume 259 (2005) no. 3, pp. 639-667 | DOI | MR | Zbl
[4] Smooth center manifolds for nonuniformly partially hyperbolic trajectories, J. Differ. Equations, Volume 237 (2007) no. 2, pp. 307-342 | DOI | MR | Zbl
[5] Center manifolds for impulsive equation under nonuniform hyperbolicity, Nonlinear Anal., Theory Methods Appl., Volume 74 (2011) no. 5, pp. 1616-1627 | DOI | MR | Zbl
[6] Center manifold for infinite dimensional nonautonomous differential equations, J. Differ. Equations, Volume 141 (1997) no. 2, pp. 356-399 | DOI | MR | Zbl
[7] Ordinary Differential Equations with Applications, Texts in Applied Mathematics, 34, Springer, 2006 | MR | Zbl
[8] Evolution Semigroups in Dynamical Systems and Differential Equations, Mathematical Surveys and Monographs, 70, American Mathematical Society, 1999 | MR | Zbl
[9] Center manifolds for invariant sets, J. Differ. Equations, Volume 168 (2000) no. 2, pp. 355-385 | DOI | MR | Zbl
[10] Center manifolds for smooth invariant manifolds, Trans. Am. Math. Soc., Volume 352 (2000) no. 11, pp. 5179-5211 | DOI | MR | Zbl
[11] On sequences of maps which converge in the uniform -norm, Proc. Am. Math. Soc., Volume 128 (2000) no. 11, pp. 3285-3290 | DOI | MR | Zbl
[12] Periodic solutions for nonlinear evolution equations with non-instantaneous impulses, Nonauton. Dyn. Syst., Volume 1 (2014), pp. 93-101 | MR | Zbl
[13] On manifolds with asymptotic phase, J. Math. Anal. Appl., Volume 216 (1997) no. 2, pp. 549-568 | DOI | MR | Zbl
[14] On a Hartman linearization theorem for a class of ODE with impulse effect, Nonlinear Anal., Theory Methods Appl., Volume 38 (1999) no. 3, pp. 307-325 | DOI | MR | Zbl
[15] Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, 1988 | MR | Zbl
[16] Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer, 1981 | MR | Zbl
[17] On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., Volume 141 (2013) no. 5, pp. 1641-1649 | DOI | MR | Zbl
[18] On abstract differential equations with non instantaneous impulses, Topol. Methods Nonlinear Anal., Volume 46 (2015) no. 2, pp. 1067-1088 | MR | Zbl
[19] Center manifold theory for functional differential equations of mixed type, J. Dyn. Differ. Equations, Volume 19 (2007) no. 2, pp. 497-560 | DOI | MR | Zbl
[20] Center manifolds for periodic functional differential equations of mixed type, J. Differ. Equations, Volume 245 (2008) no. 6, pp. 1526-1565 | DOI | MR | Zbl
[21] Stable manifolds for non-instantaneous impulsive nonautonomous differential equations, Electron, J. Qual. Theory Differ. Equ., Volume 2019 (2019), 82, 28 pages | MR | Zbl
[22] Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comput., Volume 219 (2013) no. 12, pp. 6743-6749 | MR | Zbl
[23] Impulsive Differential Equations, World Scientific Series on Nonlinear Science. Series A, 14, World Scientific, 1995 | MR | Zbl
[24] Stability of noninstantaneous impulsive evolution equations, Appl. Math. Lett., Volume 73 (2017), pp. 157-162 | DOI | MR | Zbl
[25] A general class of impulsive evolution equations, Topol. Methods Nonlinear Anal., Volume 46 (2015) no. 2, pp. 915-933 | MR | Zbl
[26] Stability analysis for a general class of non-instantaneous impulsive differential equations, Mediterr. J. Math., Volume 14 (2017) no. 2, 46, 21 pages | MR | Zbl
[27] Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions, Bull. Sci. Math., Volume 141 (2017) no. 7, pp. 727-746 | DOI | MR | Zbl
[28] Lyapunov regularity and stability of linear non-instantaneous impulsive differential systems, IMA J. Appl. Math., Volume 84 (2019) no. 4, pp. 712-747 | DOI | MR
[29] On the orbital Hausdorff dependence of differential equations with non-instantaneous impulses, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 2, pp. 150-171 | DOI | MR | Zbl
[30] Impulsive Control Theory, Lecture Notes in Control and Information Sciences, 272, Springer, 2001 | MR | Zbl
Cité par Sources :