Équations différentielles
Center Manifolds for Non-instantaneous Impulsive Equations Under Nonuniform Hyperbolicity
Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 341-364.

In this paper, we establish the existence of smooth center manifolds for a class of nonautonomous differential equations with non-instantaneous impulses under sufficiently small perturbations of the linear homogeneous part which has a nonuniform exponential trichotomy. In addition, we show the C 1 smoothness of center manifolds outside the jumping times.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.47
Li, Mengmeng 1 ; Wang, JinRong 1, 2 ; O’Regan, Donal 3 ; Fečkan, Michal 4, 5

1 Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, P.R. China
2 School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, China
3 School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
4 Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina, 842 48 Bratislava, Slovakia
5 Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia
@article{CRMATH_2020__358_3_341_0,
     author = {Li, Mengmeng and Wang, JinRong and O{\textquoteright}Regan, Donal and Fe\v{c}kan, Michal},
     title = {Center {Manifolds} for {Non-instantaneous} {Impulsive} {Equations} {Under} {Nonuniform} {Hyperbolicity}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {341--364},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {3},
     year = {2020},
     doi = {10.5802/crmath.47},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.47/}
}
TY  - JOUR
AU  - Li, Mengmeng
AU  - Wang, JinRong
AU  - O’Regan, Donal
AU  - Fečkan, Michal
TI  - Center Manifolds for Non-instantaneous Impulsive Equations Under Nonuniform Hyperbolicity
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 341
EP  - 364
VL  - 358
IS  - 3
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.47/
DO  - 10.5802/crmath.47
LA  - en
ID  - CRMATH_2020__358_3_341_0
ER  - 
%0 Journal Article
%A Li, Mengmeng
%A Wang, JinRong
%A O’Regan, Donal
%A Fečkan, Michal
%T Center Manifolds for Non-instantaneous Impulsive Equations Under Nonuniform Hyperbolicity
%J Comptes Rendus. Mathématique
%D 2020
%P 341-364
%V 358
%N 3
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.47/
%R 10.5802/crmath.47
%G en
%F CRMATH_2020__358_3_341_0
Li, Mengmeng; Wang, JinRong; O’Regan, Donal; Fečkan, Michal. Center Manifolds for Non-instantaneous Impulsive Equations Under Nonuniform Hyperbolicity. Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 341-364. doi : 10.5802/crmath.47. http://www.numdam.org/articles/10.5802/crmath.47/

[1] Bainov, Drumi D.; Simeonov, Pavel S. Theory of Impulsive Differential Equations, Series on Advances in Mathematics for Applied Sciences, 28, World Scientific, 1995

[2] Bainov, Drumi D.; Simeonov, Pavel S. Oscillation Theory of Impulsive Differential Equations, International Publications, 1998 | Zbl

[3] Barreira, Luis; Valls, Claudia Smoothness of invariant manifolds for nonautonomous equations, Commun. Math. Phys., Volume 259 (2005) no. 3, pp. 639-667 | DOI | MR | Zbl

[4] Barreira, Luis; Valls, Claudia Smooth center manifolds for nonuniformly partially hyperbolic trajectories, J. Differ. Equations, Volume 237 (2007) no. 2, pp. 307-342 | DOI | MR | Zbl

[5] Barreira, Luis; Valls, Claudia Center manifolds for impulsive equation under nonuniform hyperbolicity, Nonlinear Anal., Theory Methods Appl., Volume 74 (2011) no. 5, pp. 1616-1627 | DOI | MR | Zbl

[6] Chicone, C.; Latushkin, Yuri Center manifold for infinite dimensional nonautonomous differential equations, J. Differ. Equations, Volume 141 (1997) no. 2, pp. 356-399 | DOI | MR | Zbl

[7] Chicone, Carmen Ordinary Differential Equations with Applications, Texts in Applied Mathematics, 34, Springer, 2006 | MR | Zbl

[8] Chicone, Carmen; Latushkin, Yuri Evolution Semigroups in Dynamical Systems and Differential Equations, Mathematical Surveys and Monographs, 70, American Mathematical Society, 1999 | MR | Zbl

[9] Chow, Shui-Nee; Liu, Weishi; Yi, Yingfei Center manifolds for invariant sets, J. Differ. Equations, Volume 168 (2000) no. 2, pp. 355-385 | DOI | MR | Zbl

[10] Chow, Shui-Nee; Liu, Weishi; Yi, Yingfei Center manifolds for smooth invariant manifolds, Trans. Am. Math. Soc., Volume 352 (2000) no. 11, pp. 5179-5211 | DOI | MR | Zbl

[11] El Bialy, Mohamed S. On sequences of C b k,δ maps which converge in the uniform C 0 -norm, Proc. Am. Math. Soc., Volume 128 (2000) no. 11, pp. 3285-3290 | DOI | MR | Zbl

[12] Fečkan, Michal; Wang, JinRong; Zhou, Yong Periodic solutions for nonlinear evolution equations with non-instantaneous impulses, Nonauton. Dyn. Syst., Volume 1 (2014), pp. 93-101 | MR | Zbl

[13] Fenner, Julio López; Pinto, Manuel On (h,k) manifolds with asymptotic phase, J. Math. Anal. Appl., Volume 216 (1997) no. 2, pp. 549-568 | DOI | MR | Zbl

[14] Fenner, Julio López; Pinto, Manuel On a Hartman linearization theorem for a class of ODE with impulse effect, Nonlinear Anal., Theory Methods Appl., Volume 38 (1999) no. 3, pp. 307-325 | DOI | MR | Zbl

[15] Hale, Jack K. Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, 1988 | MR | Zbl

[16] Henry, Dan Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer, 1981 | MR | Zbl

[17] Hernández, Eduardo; O’Regan, Donal On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., Volume 141 (2013) no. 5, pp. 1641-1649 | DOI | MR | Zbl

[18] Hernández, Eduardo; Pierri, Michelle; O’Regan, Donal On abstract differential equations with non instantaneous impulses, Topol. Methods Nonlinear Anal., Volume 46 (2015) no. 2, pp. 1067-1088 | MR | Zbl

[19] Hupkes, Hermen J.; Verduyn Lunel, Sjoerd M. Center manifold theory for functional differential equations of mixed type, J. Dyn. Differ. Equations, Volume 19 (2007) no. 2, pp. 497-560 | DOI | MR | Zbl

[20] Hupkes, Hermen J.; Verduyn Lunel, Sjoerd M. Center manifolds for periodic functional differential equations of mixed type, J. Differ. Equations, Volume 245 (2008) no. 6, pp. 1526-1565 | DOI | MR | Zbl

[21] Li, Mengmeng; Wang, JinRong; O’Regan, Donal Stable manifolds for non-instantaneous impulsive nonautonomous differential equations, Electron, J. Qual. Theory Differ. Equ., Volume 2019 (2019), 82, 28 pages | MR | Zbl

[22] Pierri, Michelle; O’Regan, Donal; Rolnik, Vanessa Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comput., Volume 219 (2013) no. 12, pp. 6743-6749 | MR | Zbl

[23] Samoĭlenko, Anatoliĭ M.; Perestyuk, Nikolai A. Impulsive Differential Equations, World Scientific Series on Nonlinear Science. Series A, 14, World Scientific, 1995 | MR | Zbl

[24] Wang, JinRong Stability of noninstantaneous impulsive evolution equations, Appl. Math. Lett., Volume 73 (2017), pp. 157-162 | DOI | MR | Zbl

[25] Wang, JinRong; Fečkan, Michal A general class of impulsive evolution equations, Topol. Methods Nonlinear Anal., Volume 46 (2015) no. 2, pp. 915-933 | MR | Zbl

[26] Wang, JinRong; Fečkan, Michal; Tian, Ying Stability analysis for a general class of non-instantaneous impulsive differential equations, Mediterr. J. Math., Volume 14 (2017) no. 2, 46, 21 pages | MR | Zbl

[27] Wang, JinRong; Fečkan, Michal; Zhou, Yong Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions, Bull. Sci. Math., Volume 141 (2017) no. 7, pp. 727-746 | DOI | MR | Zbl

[28] Wang, JinRong; Li, Mengmeng; O’Regan, Donal Lyapunov regularity and stability of linear non-instantaneous impulsive differential systems, IMA J. Appl. Math., Volume 84 (2019) no. 4, pp. 712-747 | DOI | MR

[29] Yang, Dan; Wang, JinRong; O’Regan, Donal On the orbital Hausdorff dependence of differential equations with non-instantaneous impulses, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 2, pp. 150-171 | DOI | MR | Zbl

[30] Yang, Tao Impulsive Control Theory, Lecture Notes in Control and Information Sciences, 272, Springer, 2001 | MR | Zbl

Cité par Sources :