Équations aux dérivées partielles
A note on hypocoercivity for kinetic equations with heavy-tailed equilibrium
[Une note sur l’hypocoercivité pour les équations cinétiques avec équilibres à queue lourde]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 333-340.

Dans cet article, on s’intéresse au comportement en temps long d’équations cinétiques linéaires dont les équilibres locaux sont à queue lourde. Notre contribution principale concerne l’équation de Lévy–Fokker–Planck cinétique, pour laquelle nous adaptons des techniques d’hypocoercivité afin de démontrer la convergence exponentielle des solutions vers un équilibre global. En comparant au cas de l’équation de Fokker–Planck cinétique classique, les enjeux ici sont liés au manque de symétrie de l’opérateur non-local de Lévy–Fokker–Planck et à la compréhension de ses propriétés de régularisation. En complément de notre analyse, nous traitons également le cas de l’équation de BGK à queue lourde.

In this paper we are interested in the large time behavior of linear kinetic equations with heavy-tailed local equilibria. Our main contribution concerns the kinetic Lévy–Fokker–Planck equation, for which we adapt hypocoercivity techniques in order to show that solutions converge exponentially fast to the global equilibrium. Compared to the classical kinetic Fokker–Planck equation, the issues here concern the lack of symmetry of the non-local Lévy–Fokker–Planck operator and the understanding of its regularization properties. As a complementary related result, we also treat the case of the heavy-tailed BGK equation.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.46
Ayi, Nathalie 1 ; Herda, Maxime 2 ; Hivert, Hélène 3 ; Tristani, Isabelle 4

1 Sorbonne Université, Université de Paris, CNRS, Laboratoire Jacques-Louis Lions, 4 place Jussieu, 75005 Paris, France
2 Inria, Univ. Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille, France
3 Univ. Lyon, École centrale de Lyon, CNRS UMR 5208, Institut Camille Jordan, F-69134 Écully, France
4 DMA, École Normale Supérieure, CNRS, PSL Research University, 45 rue d’Ulm, 75005 Paris, France
@article{CRMATH_2020__358_3_333_0,
     author = {Ayi, Nathalie and Herda, Maxime and Hivert, H\'el\`ene and Tristani, Isabelle},
     title = {A note on hypocoercivity for kinetic equations with heavy-tailed equilibrium},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {333--340},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {3},
     year = {2020},
     doi = {10.5802/crmath.46},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.46/}
}
TY  - JOUR
AU  - Ayi, Nathalie
AU  - Herda, Maxime
AU  - Hivert, Hélène
AU  - Tristani, Isabelle
TI  - A note on hypocoercivity for kinetic equations with heavy-tailed equilibrium
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 333
EP  - 340
VL  - 358
IS  - 3
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.46/
DO  - 10.5802/crmath.46
LA  - en
ID  - CRMATH_2020__358_3_333_0
ER  - 
%0 Journal Article
%A Ayi, Nathalie
%A Herda, Maxime
%A Hivert, Hélène
%A Tristani, Isabelle
%T A note on hypocoercivity for kinetic equations with heavy-tailed equilibrium
%J Comptes Rendus. Mathématique
%D 2020
%P 333-340
%V 358
%N 3
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.46/
%R 10.5802/crmath.46
%G en
%F CRMATH_2020__358_3_333_0
Ayi, Nathalie; Herda, Maxime; Hivert, Hélène; Tristani, Isabelle. A note on hypocoercivity for kinetic equations with heavy-tailed equilibrium. Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 333-340. doi : 10.5802/crmath.46. http://www.numdam.org/articles/10.5802/crmath.46/

[1] Aceves-Sanchez, Pedro; Cesbron, Ludovic Fractional Diffusion Limit for a Fractional Vlasov–Fokker–Planck Equation, SIAM J. Math. Anal., Volume 51 (2019) no. 1, pp. 469-488 | DOI | MR | Zbl

[2] Ayi, Nathalie; Herda, Maxime; Hivert, Hélène; Tristani, Isabelle On discretization of fractionnal Fokker–Planck equations (In preparation)

[3] Bessemoulin-Chatard, Marianne; Herda, Maxime; Rey, Thomas Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations, Math. Comput., Volume 89 (2020) no. 323, pp. 1093-1133 | DOI | MR | Zbl

[4] Bogdan, Krzysztof; Stós, Andrzej; Sztonyk, Paweł Harnack inequality for stable processes on d-sets, Stud. Math., Volume 158 (2003) no. 2, pp. 163-198 | DOI | MR | Zbl

[5] Bouin, Emeric; Dolbeault, Jean; Lafleche, Laurent Fractional Hypocoercivity (2019) (https://arxiv.org/abs/1911.11020)

[6] Chafaï, Djalil Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities, J. Math. Kyoto Univ., Volume 44 (2004) no. 2, pp. 325-363 | DOI | MR | Zbl

[7] Crouseilles, Nicolas; Hivert, Hélène; Lemou, Mohammed Numerical schemes for kinetic equations in the anomalous diffusion limit. Part I: The case of heavy-tailed equilibrium, SIAM J. Sci. Comput., Volume 38 (2016) no. 2, p. A737-A764 | DOI | MR | Zbl

[8] Dujardin, Guillaume; Hérau, Frédéric; Lafitte, Pauline Coercivity, hypocoercivity, exponential time decay and simulations for discrete Fokker–Planck equations, Numer. Math., Volume 144 (2020) no. 3, pp. 615-697 | DOI | MR | Zbl

[9] Gentil, Ivan; Imbert, Cyril The Lévy–Fokker–Planck equation: Φ-entropies and convergence to equilibrium, Asymptotic Anal., Volume 59 (2008) no. 3-4, pp. 125-138 | DOI | Zbl

[10] Hérau, Frédéric Introduction to hypocoercive methods and applications for simple linear inhomogeneous kinetic models, Lectures on the analysis of nonlinear partial differential equations. Part 5 (Morningside Lectures in Mathematics), Volume 5, International Press, 2018, pp. 119-147 | MR | Zbl

[11] Hérau, Frédéric; Tonon, Daniela; Tristani, Isabelle Short time diffusion properties of inhomogeneous kinetic equations with fractional collision kernel (2018) (https://arxiv.org/abs/1709.09943)

[12] Kwaśnicki, Mateusz Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., Volume 20 (2017) no. 1, pp. 7-51 | MR | Zbl

[13] Tristani, Isabelle Fractional Fokker–Planck equation, Commun. Math. Sci., Volume 13 (2015) no. 5, pp. 1243-1260 | DOI | MR | Zbl

[14] Villani, Cédric Hypocoercivity, Memoirs of the American Mathematical Society, 950, American Mathematical Society, 2009, iv+141 pages | Zbl

[15] Wang, Jian A simple approach to functional inequalities for non-local Dirichlet forms, ESAIM, Probab. Stat., Volume 18 (2014), pp. 503-513 | DOI | Numdam | MR | Zbl

Cité par Sources :