In this note, we disprove two Romanov type conjectures posed by Chen.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G10_1183_0, author = {Ding, Yuchen}, title = {A counterexample of two {Romanov} type conjectures}, journal = {Comptes Rendus. Math\'ematique}, pages = {1183--1185}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G10}, year = {2022}, doi = {10.5802/crmath.425}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.425/} }
TY - JOUR AU - Ding, Yuchen TI - A counterexample of two Romanov type conjectures JO - Comptes Rendus. Mathématique PY - 2022 SP - 1183 EP - 1185 VL - 360 IS - G10 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.425/ DO - 10.5802/crmath.425 LA - en ID - CRMATH_2022__360_G10_1183_0 ER -
Ding, Yuchen. A counterexample of two Romanov type conjectures. Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1183-1185. doi : 10.5802/crmath.425. http://www.numdam.org/articles/10.5802/crmath.425/
[1] On de Polignac’s conjecture, Simon Stevin, Volume 27 (1950), pp. 99-105 | MR
[2] On the integers of the form and some related problems, Summa Brasil. Math., Volume 2 (1950), pp. 113-123 | MR | Zbl
[3] The Romanoff theorem revisited, Acta Arith., Volume 135 (2008) no. 2, pp. 137-142 | MR | Zbl
[4] Recherches nouvelles sur les nombres prEmiers, C. R. Acad. Sci. Paris, Volume 29 (1849), pp. 738-739
[5] Six propositions arithmologiques déduites du crible d’Eratosthène, Nouv. Ann. Math., Volume 8 (1849), pp. 423-429
[6] Über einige Sätze der additiven Zahlentheorie, Math. Ann., Volume 109 (1934), pp. 668-678 | Zbl
Cité par Sources :