Dans cet article, nous généralisons un théorème de A. Kodama sur le caractère borné des domaines circulaires hyperboliques. Nous démontrons que si est un groupe de Lie compact qui agit linéairement sur et vérifie , et si est un domaine -invariant orbitalement convexe de qui contient , alors est borné si et seulement s’il est hyperbolique au sens de Kobayashi.
In this paper, we generalize a theorem of A. Kodama about boundedness of hyperbolic circular domains. We will prove that if is a compact Lie group which acts linearly on with , and is a -invariant orbit convex domain in which contains , then is bounded if and only if is Kobayashi hyperbolic.
Accepté le :
Publié le :
@article{CRMATH_2020__358_3_321_0, author = {Ning, Jiafu and Zhou, Xiangyu}, title = {On the boundedness of invariant hyperbolic domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {321--326}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {3}, year = {2020}, doi = {10.5802/crmath.42}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.42/} }
TY - JOUR AU - Ning, Jiafu AU - Zhou, Xiangyu TI - On the boundedness of invariant hyperbolic domains JO - Comptes Rendus. Mathématique PY - 2020 SP - 321 EP - 326 VL - 358 IS - 3 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.42/ DO - 10.5802/crmath.42 LA - en ID - CRMATH_2020__358_3_321_0 ER -
%0 Journal Article %A Ning, Jiafu %A Zhou, Xiangyu %T On the boundedness of invariant hyperbolic domains %J Comptes Rendus. Mathématique %D 2020 %P 321-326 %V 358 %N 3 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.42/ %R 10.5802/crmath.42 %G en %F CRMATH_2020__358_3_321_0
Ning, Jiafu; Zhou, Xiangyu. On the boundedness of invariant hyperbolic domains. Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 321-326. doi : 10.5802/crmath.42. http://www.numdam.org/articles/10.5802/crmath.42/
[1] Hyperbolicity of circular domains, Tôhoku Math. J., Volume 35 (1983), pp. 259-265 | MR | Zbl
[2] Envelopes of holomorphy of Hartogs and circular domains, Pac. J. Math., Volume 149 (1991) no. 2, pp. 231-249 | DOI | MR | Zbl
[3] Geometric Invariant Theory on Stein spaces, Math. Ann., Volume 289 (1991) no. 4, pp. 631-662 | DOI | MR | Zbl
[4] Differential geometry, Lie groups and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press Inc., 1978 | MR | Zbl
[5] Über das Randverhalten von Holomorphen Automorphismen beschränkter Gebiete, Manuscr. Math., Volume 3 (1970), pp. 257-270 | DOI | Zbl
[6] Hyperbolic Manifolds and Holomorphic Mappings: an introduction, World Scientific, 2005 | DOI | Zbl
[7] Boundedness of circular domains, Proc. Japan Acad., Ser. A, Volume 58 (1982), pp. 227-230 | DOI | MR | Zbl
[8] Function Theory of Several Complex Variables, American Mathematical Society, 2001 | Zbl
[9] Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 34, Springer, 1993 | Zbl
[10] Proper holomorphic mappings between invariant domains in , Trans. Am. Math. Soc., Volume 369 (2017) no. 1, pp. 517-536 | DOI | MR | Zbl
[11] Hilbert-Mumford type theorems (an unpublished lecture, www.math.ucsd.edu/~nwallach/lectures-3-math207.pdf)
[12] Rigidity and regularity in group actions, Sci. China, Ser. A, Volume 51 (2008) no. 4, pp. 819-826 | MR | Zbl
[13] On orbit connectedness, orbit convexity, and envelopes of holomorphy, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 58 (1994) no. 2, pp. 196-205 | MR | Zbl
[14] Some results related to group actions in several complex variables, Proceedings of the international congress of mathematicians (ICM 2002). Vol. II: Invited lectures, Higher Education Press, 2002, pp. 743-753 | Zbl
Cité par Sources :