Let denote the moduli space of rank one logarithmic connections singular over a finite subset of a compact Riemann surface with fixed residues. We study the rational functions into . We prove that there is a natural compactification of and the Picard group of is isomorphic to the Picard group of .
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_3_297_0, author = {Singh, Anoop}, title = {Moduli space of rank one logarithmic connections over a compact {Riemann} surface}, journal = {Comptes Rendus. Math\'ematique}, pages = {297--301}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {3}, year = {2020}, doi = {10.5802/crmath.41}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.41/} }
TY - JOUR AU - Singh, Anoop TI - Moduli space of rank one logarithmic connections over a compact Riemann surface JO - Comptes Rendus. Mathématique PY - 2020 SP - 297 EP - 301 VL - 358 IS - 3 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.41/ DO - 10.5802/crmath.41 LA - en ID - CRMATH_2020__358_3_297_0 ER -
%0 Journal Article %A Singh, Anoop %T Moduli space of rank one logarithmic connections over a compact Riemann surface %J Comptes Rendus. Mathématique %D 2020 %P 297-301 %V 358 %N 3 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.41/ %R 10.5802/crmath.41 %G en %F CRMATH_2020__358_3_297_0
Singh, Anoop. Moduli space of rank one logarithmic connections over a compact Riemann surface. Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 297-301. doi : 10.5802/crmath.41. http://www.numdam.org/articles/10.5802/crmath.41/
[1] Line bundles over a moduli space of logarithmic connections on a Riemann surface, Geom. Funct. Anal., Volume 15 (2005) no. 4, pp. 780-808 | DOI | MR | Zbl
[2] Équations différentielles á points singuliers réguliers, Lecture Notes in Mathematics, 163, Springer, 1970 | Zbl
[3] Complex abelian varieties, Grundlehren der Mathematischen Wissenschaften, 302, Springer, 1992 | MR | Zbl
[4] Moduli of semistable logarithmic connections, J. Am. Math. Soc., Volume 6 (1993) no. 3, pp. 597-609 | DOI | MR | Zbl
[5] Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 27 (1980) no. 2, pp. 265-291 | MR | Zbl
[6] Torelli theorems for moduli of logarithmic connections and parabolic bundles, Manuscr. Math., Volume 136 (2011) no. 1-2, pp. 249-271 | DOI | MR | Zbl
Cité par Sources :