Géométrie algébrique, Structure de Hodge
Rational cubic fourfolds in Hassett divisors
[Cubiques rationnelles de dimension 4 dans les diviseurs de Hassett]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 2, pp. 129-137.

Nous prouvons que chaque diviseur de Hassett–Noether–Lefschetz de cubiques spéciales de dimension 4 contient une union de trois sous-variétés paramétrant des cubiques rationnelles de dimension 4, de codimension deux dans l’espace de modules des cubiques lisses de dimension 4.

We prove that every Hassett’s Noether–Lefschetz divisor of special cubic fourfolds contains a union of three subvarieties parametrizing rational cubic fourfolds, of codimension-two in the moduli space of smooth cubic fourfolds.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.4
Classification : 14C30, 14E08, 14M20
Yang, Song 1 ; Yu, Xun 1

1 Center for Applied Mathematics, Tianjin University, Weijin Road 92, Tianjin 300072, China
@article{CRMATH_2020__358_2_129_0,
     author = {Yang, Song and Yu, Xun},
     title = {Rational cubic fourfolds in {Hassett} divisors},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {129--137},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {2},
     year = {2020},
     doi = {10.5802/crmath.4},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.4/}
}
TY  - JOUR
AU  - Yang, Song
AU  - Yu, Xun
TI  - Rational cubic fourfolds in Hassett divisors
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 129
EP  - 137
VL  - 358
IS  - 2
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.4/
DO  - 10.5802/crmath.4
LA  - en
ID  - CRMATH_2020__358_2_129_0
ER  - 
%0 Journal Article
%A Yang, Song
%A Yu, Xun
%T Rational cubic fourfolds in Hassett divisors
%J Comptes Rendus. Mathématique
%D 2020
%P 129-137
%V 358
%N 2
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.4/
%R 10.5802/crmath.4
%G en
%F CRMATH_2020__358_2_129_0
Yang, Song; Yu, Xun. Rational cubic fourfolds in Hassett divisors. Comptes Rendus. Mathématique, Tome 358 (2020) no. 2, pp. 129-137. doi : 10.5802/crmath.4. http://www.numdam.org/articles/10.5802/crmath.4/

[1] Addington, Nicolas; Hassett, Brendan; Tschinkel, Yuri; Várilly-Alvarado, Anthony Cubic fourfolds fibered in sextic del Pezzo surfaces, Am. J. Math., Volume 141 (2019) no. 6, pp. 1479-1500 | DOI | MR | Zbl

[2] Addington, Nicolas; Thomas, Richard Hodge theory and derived categories of cubic fourfolds, Duke Math. J., Volume 163 (2014) no. 10, pp. 1885-1927 | DOI | MR | Zbl

[3] Auel, Asher; Bernardara, Marcello; Bolognesi, Michele; Várilly-Alvarado, Anthony Cubic fourfolds containing a plane and a quintic del Pezzo surface, Algebr. Geom., Volume 1 (2014) no. 2, pp. 181-193 | DOI | MR | Zbl

[4] Bayer, Arend; Lahoz, Martí; Macrì, Emanuele; Nuer, Howard; Perry, Alexander; Stellari, Paolo Stability conditions in families (2019) (https://arxiv.org/abs/1902.08184v1)

[5] Bayer, Arend; Lahoz, Martí; Macrì, Emanuele; Stellari, Paolo Stability conditions on Kuznetsov components (2019) (https://arxiv.org/abs/1703.10839v2)

[6] Beauville, Arnaud; Donagi, Ron La variété des droites d’une hypersurface cubique de dimension 4, C. R. Math. Acad. Sci. Paris, Volume 301 (1985), pp. 703-706 | Zbl

[7] Bolognesi, Michele; Russo, Francesco; Staglianò, Giovanni Some loci of rational cubic fourfolds, Math. Ann., Volume 373 (2019) no. 1-2, pp. 165-190 | DOI | MR | Zbl

[8] Clemens, C. Herbert; Griffiths, Phillip The intermediate Jacobian of the cubic threefold, Ann. Math., Volume 95 (1972), pp. 281-356 | DOI | MR | Zbl

[9] Fano, Gino Sulle forme cubiche dello spazio a cinque dimensioni contenenti rigate razionali del 4 0 ordine, Comment. Math. Helv., Volume 15 (1943), pp. 71-80 | DOI | MR | Zbl

[10] Hassett, Brendan Some rational cubic fourfolds, J. Algebr. Geom., Volume 8 (1999) no. 1, pp. 103-114 | MR | Zbl

[11] Hassett, Brendan Special cubic fourfolds, Compos. Math., Volume 120 (2000) no. 1, pp. 1-23 | DOI | MR | Zbl

[12] Hassett, Brendan Cubic fourfolds, K3 surfaces, and rationality questions, Rationality problems in algebraic geometry (Lecture Notes in Mathematics), Volume 2172, Springer, 2016, pp. 29-66 | DOI | MR | Zbl

[13] Huybrechts, Daniel The K3 category of a cubic fourfold, Compos. Math., Volume 153 (2017) no. 3, pp. 586-620 | DOI | MR | Zbl

[14] Huybrechts, Daniel Hodge theory of cubic fourfolds, their Fano varieties, and associated K3 categories, Birational Geometry of Hypersurfaces (Lecture Notes of the Unione Matematica Italiana), Volume 26, Springer, 2019, pp. 165-198 | DOI

[15] Kontsevich, Maxim; Tschinkel, Yuri Specialization of birational types, Invent. Math., Volume 217 (2019) no. 2, pp. 415-432 | DOI | MR | Zbl

[16] Kuznetsov, Alexander Derived categories of cubic fourfolds, Cohomological and geometric approaches to rationality problems. New Perspectives (Progress in Mathematics), Volume 282, Birkhäuser, 2010, pp. 219-243 | DOI | MR | Zbl

[17] Laza, Radu The moduli space of cubic fourfolds via the period map, Ann. Math., Volume 172 (2010) no. 1, pp. 673-711 | DOI | MR | Zbl

[18] Looijenga, Eduard The period map for cubic fourfolds, Invent. Math., Volume 177 (2009) no. 1, pp. 213-233 | DOI | MR | Zbl

[19] Nikulin, Viacheslav V. Integral symmetric bilinear forms and some of their applications, Math. USSR, Izv., Volume 14 (1980), pp. 103-167 | DOI | Zbl

[20] Russo, Francesco; Staglianò, Giovanni Explicit rationality of some cubic fourfolds (2018) (https://arxiv.org/abs/1811.03502v1)

[21] Russo, Francesco; Staglianò, Giovanni Congruences of 5-secant conics and the rationality of some admissible cubic fourfolds, Duke Math. J., Volume 168 (2019) no. 5, pp. 849-865 | DOI | MR | Zbl

[22] Russo, Francesco; Staglianò, Giovanni Trisecant Flops, their associated K3 surfaces and the rationality of some Fano fourfolds (2019) (https://arxiv.org/abs/1909.01263v2)

[23] Serre, Jean-Pierre A course in arithmetic, Graduate Texts in Mathematics, 7, Springer, 1973 | MR | Zbl

[24] Voisin, Claire Théorème de Torelli pour les cubiques de 5 , Invent. Math., Volume 86 (1986), pp. 577-601 | DOI | Zbl

[25] Voisin, Claire Some aspects of the Hodge conjecture, Jpn. J. Math., Volume 2 (2007) no. 2, pp. 261-296 | DOI | MR | Zbl

Cité par Sources :