Nous prouvons que chaque diviseur de Hassett–Noether–Lefschetz de cubiques spéciales de dimension 4 contient une union de trois sous-variétés paramétrant des cubiques rationnelles de dimension 4, de codimension deux dans l’espace de modules des cubiques lisses de dimension 4.
We prove that every Hassett’s Noether–Lefschetz divisor of special cubic fourfolds contains a union of three subvarieties parametrizing rational cubic fourfolds, of codimension-two in the moduli space of smooth cubic fourfolds.
Accepté le :
Publié le :
@article{CRMATH_2020__358_2_129_0, author = {Yang, Song and Yu, Xun}, title = {Rational cubic fourfolds in {Hassett} divisors}, journal = {Comptes Rendus. Math\'ematique}, pages = {129--137}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {2}, year = {2020}, doi = {10.5802/crmath.4}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.4/} }
TY - JOUR AU - Yang, Song AU - Yu, Xun TI - Rational cubic fourfolds in Hassett divisors JO - Comptes Rendus. Mathématique PY - 2020 SP - 129 EP - 137 VL - 358 IS - 2 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.4/ DO - 10.5802/crmath.4 LA - en ID - CRMATH_2020__358_2_129_0 ER -
Yang, Song; Yu, Xun. Rational cubic fourfolds in Hassett divisors. Comptes Rendus. Mathématique, Tome 358 (2020) no. 2, pp. 129-137. doi : 10.5802/crmath.4. http://www.numdam.org/articles/10.5802/crmath.4/
[1] Cubic fourfolds fibered in sextic del Pezzo surfaces, Am. J. Math., Volume 141 (2019) no. 6, pp. 1479-1500 | DOI | MR | Zbl
[2] Hodge theory and derived categories of cubic fourfolds, Duke Math. J., Volume 163 (2014) no. 10, pp. 1885-1927 | DOI | MR | Zbl
[3] Cubic fourfolds containing a plane and a quintic del Pezzo surface, Algebr. Geom., Volume 1 (2014) no. 2, pp. 181-193 | DOI | MR | Zbl
[4] Stability conditions in families (2019) (https://arxiv.org/abs/1902.08184v1)
[5] Stability conditions on Kuznetsov components (2019) (https://arxiv.org/abs/1703.10839v2)
[6] La variété des droites d’une hypersurface cubique de dimension , C. R. Math. Acad. Sci. Paris, Volume 301 (1985), pp. 703-706 | Zbl
[7] Some loci of rational cubic fourfolds, Math. Ann., Volume 373 (2019) no. 1-2, pp. 165-190 | DOI | MR | Zbl
[8] The intermediate Jacobian of the cubic threefold, Ann. Math., Volume 95 (1972), pp. 281-356 | DOI | MR | Zbl
[9] Sulle forme cubiche dello spazio a cinque dimensioni contenenti rigate razionali del ordine, Comment. Math. Helv., Volume 15 (1943), pp. 71-80 | DOI | MR | Zbl
[10] Some rational cubic fourfolds, J. Algebr. Geom., Volume 8 (1999) no. 1, pp. 103-114 | MR | Zbl
[11] Special cubic fourfolds, Compos. Math., Volume 120 (2000) no. 1, pp. 1-23 | DOI | MR | Zbl
[12] Cubic fourfolds, K3 surfaces, and rationality questions, Rationality problems in algebraic geometry (Lecture Notes in Mathematics), Volume 2172, Springer, 2016, pp. 29-66 | DOI | MR | Zbl
[13] The K3 category of a cubic fourfold, Compos. Math., Volume 153 (2017) no. 3, pp. 586-620 | DOI | MR | Zbl
[14] Hodge theory of cubic fourfolds, their Fano varieties, and associated K3 categories, Birational Geometry of Hypersurfaces (Lecture Notes of the Unione Matematica Italiana), Volume 26, Springer, 2019, pp. 165-198 | DOI
[15] Specialization of birational types, Invent. Math., Volume 217 (2019) no. 2, pp. 415-432 | DOI | MR | Zbl
[16] Derived categories of cubic fourfolds, Cohomological and geometric approaches to rationality problems. New Perspectives (Progress in Mathematics), Volume 282, Birkhäuser, 2010, pp. 219-243 | DOI | MR | Zbl
[17] The moduli space of cubic fourfolds via the period map, Ann. Math., Volume 172 (2010) no. 1, pp. 673-711 | DOI | MR | Zbl
[18] The period map for cubic fourfolds, Invent. Math., Volume 177 (2009) no. 1, pp. 213-233 | DOI | MR | Zbl
[19] Integral symmetric bilinear forms and some of their applications, Math. USSR, Izv., Volume 14 (1980), pp. 103-167 | DOI | Zbl
[20] Explicit rationality of some cubic fourfolds (2018) (https://arxiv.org/abs/1811.03502v1)
[21] Congruences of -secant conics and the rationality of some admissible cubic fourfolds, Duke Math. J., Volume 168 (2019) no. 5, pp. 849-865 | DOI | MR | Zbl
[22] Trisecant Flops, their associated K3 surfaces and the rationality of some Fano fourfolds (2019) (https://arxiv.org/abs/1909.01263v2)
[23] A course in arithmetic, Graduate Texts in Mathematics, 7, Springer, 1973 | MR | Zbl
[24] Théorème de Torelli pour les cubiques de , Invent. Math., Volume 86 (1986), pp. 577-601 | DOI | Zbl
[25] Some aspects of the Hodge conjecture, Jpn. J. Math., Volume 2 (2007) no. 2, pp. 261-296 | DOI | MR | Zbl
Cité par Sources :