Théorie des nombres
There are no Carmichael numbers of the form 2 n p+1 with p prime
Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1177-1181.

In this paper, we prove the theorem announced in the title.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.393
Classification : 11A51
Alahmadi, Adel 1 ; Luca, Florian 2, 3, 4

1 Research Group in Algebraic Structures and its Applications, King Abdulaziz University, Jeddah, Saudi Arabia
2 School of Maths, Wits University, 1 Jan Smuts, Braamfontein 2000, Johannesburg, South Africa
3 Centro de Ciencias Matemáticas, UNAM, Morelia, Mexico
4 Research Group in Algebraic Structures and Applications, King Abdulaziz University, Abdulah Sulayman, Jeddah 22254, Saudi Arabia
@article{CRMATH_2022__360_G10_1177_0,
     author = {Alahmadi, Adel and Luca, Florian},
     title = {There are no {Carmichael} numbers of the form $2^np+1$ with $p$ prime},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1177--1181},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G10},
     year = {2022},
     doi = {10.5802/crmath.393},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.393/}
}
TY  - JOUR
AU  - Alahmadi, Adel
AU  - Luca, Florian
TI  - There are no Carmichael numbers of the form $2^np+1$ with $p$ prime
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1177
EP  - 1181
VL  - 360
IS  - G10
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.393/
DO  - 10.5802/crmath.393
LA  - en
ID  - CRMATH_2022__360_G10_1177_0
ER  - 
%0 Journal Article
%A Alahmadi, Adel
%A Luca, Florian
%T There are no Carmichael numbers of the form $2^np+1$ with $p$ prime
%J Comptes Rendus. Mathématique
%D 2022
%P 1177-1181
%V 360
%N G10
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.393/
%R 10.5802/crmath.393
%G en
%F CRMATH_2022__360_G10_1177_0
Alahmadi, Adel; Luca, Florian. There are no Carmichael numbers of the form $2^np+1$ with $p$ prime. Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1177-1181. doi : 10.5802/crmath.393. http://www.numdam.org/articles/10.5802/crmath.393/

[1] Alford, William R.; Granville, Andrew; Pomerance, Carl There are infinitely many Carmichael numbers, Ann. Math., Volume 139 (1994) no. 3, pp. 703-722 | DOI | MR | Zbl

[2] Banks, Williams D.; Finch, Carrie; Luca, Florian; Pomerance, Carl; Stănică, Pantelimon Sierpiński and Carmichael numbers, Trans. Am. Math. Soc., Volume 367 (2015) no. 1, pp. 355-376 | DOI | Zbl

[3] Cilleruelo, Javier; Luca, Florian; Pizarro, Amalia Carmichael numbers in the sequence (2 n k+1) n1 , Math. Comput., Volume 85 (2016) no. 297, pp. 357-377 | DOI | MR | Zbl

[4] Erdős, Paul; Odlyzko, Andrew M. On the density of odd integers of the form (p-1)2 -n and related questions, J. Number Theory, Volume 11 (1979), pp. 257-263 | DOI | MR | Zbl

[5] Granville, Andrew Primes in intervals of bounded length, Bull. Am. Math. Soc., Volume 52 (2015) no. 2, pp. 171-222 | DOI | MR | Zbl

[6] Wright, Thomas The impossibility of certain types of Carmichael numbers, Integers, Volume 12 (2012) no. 5, pp. 951-964 | DOI | MR | Zbl

Cité par Sources :