In this paper, we prove the theorem announced in the title.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G10_1177_0, author = {Alahmadi, Adel and Luca, Florian}, title = {There are no {Carmichael} numbers of the form $2^np+1$ with $p$ prime}, journal = {Comptes Rendus. Math\'ematique}, pages = {1177--1181}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G10}, year = {2022}, doi = {10.5802/crmath.393}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.393/} }
TY - JOUR AU - Alahmadi, Adel AU - Luca, Florian TI - There are no Carmichael numbers of the form $2^np+1$ with $p$ prime JO - Comptes Rendus. Mathématique PY - 2022 SP - 1177 EP - 1181 VL - 360 IS - G10 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.393/ DO - 10.5802/crmath.393 LA - en ID - CRMATH_2022__360_G10_1177_0 ER -
%0 Journal Article %A Alahmadi, Adel %A Luca, Florian %T There are no Carmichael numbers of the form $2^np+1$ with $p$ prime %J Comptes Rendus. Mathématique %D 2022 %P 1177-1181 %V 360 %N G10 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.393/ %R 10.5802/crmath.393 %G en %F CRMATH_2022__360_G10_1177_0
Alahmadi, Adel; Luca, Florian. There are no Carmichael numbers of the form $2^np+1$ with $p$ prime. Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1177-1181. doi : 10.5802/crmath.393. http://www.numdam.org/articles/10.5802/crmath.393/
[1] There are infinitely many Carmichael numbers, Ann. Math., Volume 139 (1994) no. 3, pp. 703-722 | DOI | MR | Zbl
[2] Sierpiński and Carmichael numbers, Trans. Am. Math. Soc., Volume 367 (2015) no. 1, pp. 355-376 | DOI | Zbl
[3] Carmichael numbers in the sequence , Math. Comput., Volume 85 (2016) no. 297, pp. 357-377 | DOI | MR | Zbl
[4] On the density of odd integers of the form and related questions, J. Number Theory, Volume 11 (1979), pp. 257-263 | DOI | MR | Zbl
[5] Primes in intervals of bounded length, Bull. Am. Math. Soc., Volume 52 (2015) no. 2, pp. 171-222 | DOI | MR | Zbl
[6] The impossibility of certain types of Carmichael numbers, Integers, Volume 12 (2012) no. 5, pp. 951-964 | DOI | MR | Zbl
Cité par Sources :