In this paper, we disprove a recent monotonicity conjecture of C. Procesi on the generating function for monotone walks on the symmetric group, an object which is equivalent to the Weingarten function of the unitary group.
Accepté le :
Publié le :
@article{CRMATH_2022__360_G10_1169_0, author = {Do{\l}\c{e}ga, Maciej and Novak, Jonathan}, title = {Procesi{\textquoteright}s {Conjecture} on the {Formanek-Weingarten} {Function} is {False}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1169--1172}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G10}, year = {2022}, doi = {10.5802/crmath.391}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.391/} }
TY - JOUR AU - Dołȩga, Maciej AU - Novak, Jonathan TI - Procesi’s Conjecture on the Formanek-Weingarten Function is False JO - Comptes Rendus. Mathématique PY - 2022 SP - 1169 EP - 1172 VL - 360 IS - G10 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.391/ DO - 10.5802/crmath.391 LA - en ID - CRMATH_2022__360_G10_1169_0 ER -
%0 Journal Article %A Dołȩga, Maciej %A Novak, Jonathan %T Procesi’s Conjecture on the Formanek-Weingarten Function is False %J Comptes Rendus. Mathématique %D 2022 %P 1169-1172 %V 360 %N G10 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.391/ %R 10.5802/crmath.391 %G en %F CRMATH_2022__360_G10_1169_0
Dołȩga, Maciej; Novak, Jonathan. Procesi’s Conjecture on the Formanek-Weingarten Function is False. Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1169-1172. doi : 10.5802/crmath.391. http://www.numdam.org/articles/10.5802/crmath.391/
[1] Parking functions of types A and B, Electron. J. Comb., Volume 9 (2002) no. 1, N7, 5 pages | MR | Zbl
[2] The Weingarten calculus (2021) (https://arxiv.org/abs/2109.14890, to be pusblished in Not. Amer. Math. Soc.)
[3] Jucys–Murphy elements and unitary matrix integrals, Int. Math. Res. Not., Volume 2013 (2013) no. 2, pp. 362-397 | DOI | MR | Zbl
[4] Jucys-Murphy elements and the Weingarten function, Noncommutative harmonic analysis with applications to probability. II: Papers presented at the 11th workshop, Bȩdlewo, Poland, August 17–23, 2008 (Banach Center Publications), Volume 89, Polish Academy of Sciences, 2010, pp. 231-235 | DOI | MR | Zbl
[5] A note on the Formanek Weingarten function, Note Mat., Volume 41 (2021) no. 1, pp. 69-110 | MR | Zbl
[6] Parking functions and noncrossing partitions, Electron. J. Comb., Volume 4 (1997) no. 2, R20, 14 pages | MR | Zbl
[7] Enumerative Combinatorics. Volume 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, 1999 | DOI | Zbl
Cité par Sources :