We show the existence of expanding solitons of the -Laplacian flow on non-solvable Lie groups, and we give the first example of a steady soliton that is not an extremally Ricci pinched -structure.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_4_401_0, author = {Fino, Anna and Raffero, Alberto}, title = {Remarks on homogeneous solitons of the $\protect \mathrm{G}_{2}${-Laplacian} flow}, journal = {Comptes Rendus. Math\'ematique}, pages = {401--406}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {4}, year = {2020}, doi = {10.5802/crmath.39}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.39/} }
TY - JOUR AU - Fino, Anna AU - Raffero, Alberto TI - Remarks on homogeneous solitons of the $\protect \mathrm{G}_{2}$-Laplacian flow JO - Comptes Rendus. Mathématique PY - 2020 SP - 401 EP - 406 VL - 358 IS - 4 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.39/ DO - 10.5802/crmath.39 LA - en ID - CRMATH_2020__358_4_401_0 ER -
%0 Journal Article %A Fino, Anna %A Raffero, Alberto %T Remarks on homogeneous solitons of the $\protect \mathrm{G}_{2}$-Laplacian flow %J Comptes Rendus. Mathématique %D 2020 %P 401-406 %V 358 %N 4 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.39/ %R 10.5802/crmath.39 %G en %F CRMATH_2020__358_4_401_0
Fino, Anna; Raffero, Alberto. Remarks on homogeneous solitons of the $\protect \mathrm{G}_{2}$-Laplacian flow. Comptes Rendus. Mathématique, Tome 358 (2020) no. 4, pp. 401-406. doi : 10.5802/crmath.39. http://www.numdam.org/articles/10.5802/crmath.39/
[1] Seven Dimensional Geometries with Special Torsion, Ph. D. Thesis, Duke University (2019)
[2] Some remarks on -structures, Proceedings of Gökova Geometry-Topology Conference 2005, International Press, 2006, pp. 75-109 | Zbl
[3] Exact -structures on unimodular Lie algebras (2020) (https://arxiv.org/abs/1904.11066v3, to appear in Monatsh. Math.) | DOI
[4] Closed -structures on non-solvable Lie groups, Rev. Mat. Complut., Volume 32 (2019) no. 3, pp. 837-851 | DOI | MR | Zbl
[5] A class of eternal solutions to the -Laplacian flow (2020) (https://arxiv.org/abs/1807.01128v2, to appear in J. Geom. Anal.) | DOI
[6] Closed warped -structures evolving under the Laplacian flow, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 20 (2020), pp. 315-348 | DOI
[7] Homogeneous Ricci solitons are algebraic, Geom. Topol., Volume 18 (2014) no. 4, pp. 2477-2486 | DOI | MR | Zbl
[8] Structure of homogeneous Ricci solitons and the Alekseevskii conjecture, J. Differ. Geom., Volume 98 (2014) no. 2, pp. 315-347 | DOI | MR | Zbl
[9] Laplacian flow of homogeneous -structures and its solitons, Proc. Lond. Math. Soc., Volume 114 (2017) no. 3, pp. 527-560 | DOI | MR | Zbl
[10] Laplacian solitons: questions and homogeneous examples, Differ. Geom. Appl., Volume 54 (2017), pp. 345-360 | DOI | MR | Zbl
[11] Ricci pinched -structures on Lie groups (2020) (https://arxiv.org/abs/1902.06375v3, to appear in Commun. Anal. Geom.)
[12] Laplacian solitons and symmetry in -geometry, J. Geom. Phys., Volume 64 (2013), pp. 111-119 | MR | Zbl
[13] Geometric Flows of Structures (To appear in a forthcoming volume of the Fields Institute Communications, entitled “Lectures and Surveys on G manifolds and related topics”)
[14] Laplacian flow for closed structures: Shi-type estimates, uniqueness and compactness, Geom. Funct. Anal., Volume 27 (2017) no. 1, pp. 165-233 | DOI | MR | Zbl
[15] Laplacian solitons on nilpotent Lie groups, Bull. Belg. Math. Soc. Simon Stevin, Volume 25 (2018) no. 2, pp. 183-196 | DOI | MR | Zbl
Cité par Sources :