In this note, we show that the Horn cone associated with symplectic eigenvalues admits the same inequalities as the classical Horn cone, except that the equality corresponding to is replaced by the inequality corresponding to .
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G10_1163_0, author = {Paradan, Paul-Emile}, title = {The {Horn} cone associated with symplectic eigenvalues}, journal = {Comptes Rendus. Math\'ematique}, pages = {1163--1168}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G10}, year = {2022}, doi = {10.5802/crmath.383}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.383/} }
TY - JOUR AU - Paradan, Paul-Emile TI - The Horn cone associated with symplectic eigenvalues JO - Comptes Rendus. Mathématique PY - 2022 SP - 1163 EP - 1168 VL - 360 IS - G10 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.383/ DO - 10.5802/crmath.383 LA - en ID - CRMATH_2022__360_G10_1163_0 ER -
%0 Journal Article %A Paradan, Paul-Emile %T The Horn cone associated with symplectic eigenvalues %J Comptes Rendus. Mathématique %D 2022 %P 1163-1168 %V 360 %N G10 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.383/ %R 10.5802/crmath.383 %G en %F CRMATH_2022__360_G10_1163_0
Paradan, Paul-Emile. The Horn cone associated with symplectic eigenvalues. Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1163-1168. doi : 10.5802/crmath.383. http://www.numdam.org/articles/10.5802/crmath.383/
[1] Local systems on for a finite set, Compos. Math., Volume 129 (2001) no. 1, pp. 67-86 | DOI | MR | Zbl
[2] Variational principles for symplectic eigenvalues, Can. Math. Bull., Volume 64 (2021) no. 3, pp. 553-559 | DOI | MR | Zbl
[3] Restrictions de representations et projections d’orbites coadjointes (d’après Belkale, Kumar et Ressayre), 2011 (Séminaire Bourbaki, http://www.bourbaki.ens.fr/TEXTES/1043.pdf) | Zbl
[4] Finite and infinite dimensional generalizations of Klyachko’s theorem, Linear Algebra Appl., Volume 319 (2000) no. 1-3, pp. 3-22 | DOI | MR | Zbl
[5] Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Am. Math. Soc., Volume 37 (2000) no. 3, pp. 209-249 | DOI | MR | Zbl
[6] Eigenvalues of majorized Hermitian matrices and Littlewood-Richardson coefficients, Linear Algebra Appl., Volume 319 (2000) no. 1-3, pp. 23-36 | DOI | MR | Zbl
[7] Additivity and multiplicativity properties of some Gaussian channels for Gaussian inputs, Phys. Rev. A, Volume 73 (2006) no. 1, 012330, 9 pages | DOI | Zbl
[8] Derivatives of symplectic eigenvalues and a Lidskii type theorem, Can. J. Math., Volume 74 (2020) no. 2, pp. 457-485 | DOI | MR | Zbl
[9] Convexity properties of the moment mapping III, Invent. Math., Volume 77 (1984), pp. 547-552 | DOI | MR | Zbl
[10] Stable bundles, representation theory and Hermitian operators, Sel. Math., New Ser., Volume 4 (1998) no. 3, pp. 419-445 | DOI | MR | Zbl
[11] The honeycomb model of tensor products II: Puzzles determine facets of the Littlewood-Richardson cone, J. Am. Math. Soc., Volume 17 (2004) no. 1, pp. 19-48 | DOI | MR | Zbl
[12] Non-Abelian convexity by symplectic cuts, Topology, Volume 37 (1998) no. 2, pp. 245-259 | DOI | Zbl
[13] Invariant convex cones and causality in semisimple Lie algebras and groups, J. Funct. Anal, Volume 43 (1981), pp. 313-359 | DOI | MR | Zbl
[14] Determination of invariant convex cones in simple Lie algebras, Ark. Mat., Volume 21 (1983), pp. 217-228 | DOI | MR | Zbl
[15] Horn problem for quasi-hermitian Lie groups, J. Inst. Math. Jussieu (2022), pp. 1-27 | DOI
[16] Invariant convex cones and orderings in Lie groups, Funct. Anal. Appl., Volume 14 (1980), pp. 1-10 | DOI | MR | Zbl
[17] Poisson geometry of discrete series orbits and momentum convexity for noncompact group actions, Lett. Math. Phys., Volume 56 (2001) no. 1, pp. 17-30 | DOI | MR | Zbl
[18] On the algebraic problem concerning the normal forms of linear dynamical systems, Am. J. Math., Volume 58 (1936), pp. 141-163 | DOI | MR | Zbl
Cité par Sources :