We consider a purely fractionally deferenced process driven by a periodically time-varying long memory parameter. We will build an estimate for the vector parameters using the minimum Hellinger distance estimation. The results are investigated through simulation studies.
Accepté le :
Publié le :
@article{CRMATH_2022__360_G10_1153_0, author = {Amimour, Amine and Belaide, Karima and Hili, Ouagnina}, title = {Minimum {Hellinger} distance estimates for a periodically time-varying long memory parameter}, journal = {Comptes Rendus. Math\'ematique}, pages = {1153--1162}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G10}, year = {2022}, doi = {10.5802/crmath.381}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.381/} }
TY - JOUR AU - Amimour, Amine AU - Belaide, Karima AU - Hili, Ouagnina TI - Minimum Hellinger distance estimates for a periodically time-varying long memory parameter JO - Comptes Rendus. Mathématique PY - 2022 SP - 1153 EP - 1162 VL - 360 IS - G10 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.381/ DO - 10.5802/crmath.381 LA - en ID - CRMATH_2022__360_G10_1153_0 ER -
%0 Journal Article %A Amimour, Amine %A Belaide, Karima %A Hili, Ouagnina %T Minimum Hellinger distance estimates for a periodically time-varying long memory parameter %J Comptes Rendus. Mathématique %D 2022 %P 1153-1162 %V 360 %N G10 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.381/ %R 10.5802/crmath.381 %G en %F CRMATH_2022__360_G10_1153_0
Amimour, Amine; Belaide, Karima; Hili, Ouagnina. Minimum Hellinger distance estimates for a periodically time-varying long memory parameter. Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1153-1162. doi : 10.5802/crmath.381. http://www.numdam.org/articles/10.5802/crmath.381/
[1] A long memory time series with a periodic degree of fractional differencing (2020) (https://arxiv.org/abs/2008.01939)
[2] On the invertibility in periodic ARFIMA models (2020) (https://arxiv.org/abs/2008.02978)
[3] Local asymptotic normality for a periodically time varying long memory parameter, Commun. Stat., Theory Methods, Volume 51 (2022) no. 9, pp. 2936-2952 | DOI | MR | Zbl
[4] On the invertibility of periodic moving-average models, J. Time Ser. Anal., Volume 15 (1994) no. 3, pp. 263-268 | DOI | MR | Zbl
[5] Minimum Hellinger distance estimates for parametric models, Ann. Stat., Volume 5 (1977) no. 3, pp. 445-463 | DOI | MR | Zbl
[6] Time series analysis: Forecasting and control, Holden-Day Series in Time Series Analysis, Holden Day, 1970 | Zbl
[7] Sample means, sample autocovariances, and linear regression of stationary multivariate long memory processe, Econom. Theory, Volume 18 (2002) no. 1, pp. 51-78 | DOI | MR | Zbl
[8] Periodically correlated random sequences, Sov. Math., Dokl., Volume 2 (1961), pp. 385-388 | MR | Zbl
[9] Estimation in long memory time series models, Commun. Stat., Theory Methods, Volume 21 (1992) no. 5, pp. 1327-1338 | DOI | MR | Zbl
[10] On the estimation of nonlinear time series models, Stochastics Stochastics Rep., Volume 52 (1995) no. 3-4, pp. 207-226 | DOI | MR | Zbl
[11] Fractional differencing, Biometrika, Volume 68 (1981) no. 1, pp. 165-176 | DOI | MR | Zbl
[12] Estimation par le minimum de distance de Hellinger d’un processus ARFIMA, C. R. Acad. Sci. Paris, Volume 350 (2012) no. 13-14, pp. 721-725 | DOI | MR | Zbl
[13] The quasi maximum likelihood approach to statistical inference on a nonstationary multivariate ARFIMA process, Random Oper. Stoch. Equ., Volume 21 (2013) no. 3, pp. 305-320 | DOI | MR | Zbl
[14] A clarification of the Cauchy distribution, Commun. Stat. Appl. Methods, Volume 21 (2014) no. 2, pp. 183-191 | DOI | Zbl
[15] Minimum distance estimation of stationary and non-stationary ARFIMA processes, The Econometrics Journal, Volume 10 (2007) no. 1, pp. 124-148 | DOI | MR | Zbl
[16] Estimation of a stationary multivariate ARFIMA process, Afr. Stat., Volume 13 (2018) no. 3, pp. 1717-1732 | DOI | MR | Zbl
[17] Using periodic autoregressions for multiple spectral estimation, Technometrics, Volume 24 (1982) no. 2, pp. 109-116 | DOI | MR | Zbl
[18] On the invertibility of fractionally differenced ARIMA processes, Biometrika, Volume 80 (1993) no. 3, pp. 703-709 | DOI | MR | Zbl
[19] On periodic and multiple autoregressions, Ann. Stat., Volume 6 (1978) no. 6, pp. 1310-1317 | MR | Zbl
[20] Nonparametric functional estimation, Probability and Mathematical Statistics, Academic Press Inc., 1983 | Zbl
[21] Maximum likelihood estimation of stationary univariate fractionally integrated time series models, J. Econom., Volume 53 (1992) no. 1-3, pp. 165-188 | DOI | MR
[22] Some results in periodic autoregression, Biometrika, Volume 66 (1979) no. 2, pp. 219-228 | DOI | MR | Zbl
[23] Periodic autoregressive-moving average (PARMA) modeling with application to water resources, Journal of the American Water Resources Association, Volume 21 (1985) no. 5, p. 721-30 | DOI
[24] Kernel density estimation for linear process, Ann. Stat., Volume 30 (2002) no. 5, pp. 1441-1459 | Zbl
[25] On estimation of long-memory time series models, Aust. J. Stat., Volume 27 (1985) no. 3, pp. 303-320 | DOI | MR | Zbl
Cité par Sources :