We prove essentially optimal bounds for norms of spectral projectors on thin spherical shells for the Laplacian on the cylinder . In contrast to previous investigations into spectral projectors on tori, having one unbounded dimension available permits a compact self-contained proof.
Accepté le :
Publié le :
@article{CRMATH_2022__360_G11_1257_0, author = {Germain, Pierre and Myerson, Simon}, title = {Bounds for spectral projectors on the {Euclidean} cylinder}, journal = {Comptes Rendus. Math\'ematique}, pages = {1257--1262}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G11}, year = {2022}, doi = {10.5802/crmath.378}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.378/} }
TY - JOUR AU - Germain, Pierre AU - Myerson, Simon TI - Bounds for spectral projectors on the Euclidean cylinder JO - Comptes Rendus. Mathématique PY - 2022 SP - 1257 EP - 1262 VL - 360 IS - G11 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.378/ DO - 10.5802/crmath.378 LA - en ID - CRMATH_2022__360_G11_1257_0 ER -
%0 Journal Article %A Germain, Pierre %A Myerson, Simon %T Bounds for spectral projectors on the Euclidean cylinder %J Comptes Rendus. Mathématique %D 2022 %P 1257-1262 %V 360 %N G11 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.378/ %R 10.5802/crmath.378 %G en %F CRMATH_2022__360_G11_1257_0
Germain, Pierre; Myerson, Simon. Bounds for spectral projectors on the Euclidean cylinder. Comptes Rendus. Mathématique, Tome 360 (2022) no. G11, pp. 1257-1262. doi : 10.5802/crmath.378. http://www.numdam.org/articles/10.5802/crmath.378/
[1] Global endpoint strichartz estimates for Schrödinger equations on the cylinder , Nonlinear Anal., Theory Methods Appl., Volume 206 (2021), 112172 | Zbl
[2] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II: The KdV-equation, Geom. Funct. Anal., Volume 3 (1993) no. 3, pp. 209-262 | DOI | MR | Zbl
[3] The proof of the decoupling conjecture, Ann. Math., Volume 182 (2015) no. 1, pp. 351-389 | DOI | MR | Zbl
[4] Bounds for spectral projectors on tori (2021) (https://arxiv.org/abs/2104.13274v1)
[5] Fourier integrals in classical analysis, Cambridge Tracts in Mathematic, 105, Cambridge University Press, 1993 | DOI | Zbl
[6] On 2D nonlinear schrödinger equations with data on , J. Funct. Anal., Volume 182 (2001) no. 2, pp. 427-442 | DOI | Zbl
Cité par Sources :