In this paper, we derive the -limit of some optimal material distribution problems as the exponent goes to infinity.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G10_1145_0, author = {Zorgati, Hamdi}, title = {A $\Gamma $-convergence result for optimal design problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {1145--1151}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G10}, year = {2022}, doi = {10.5802/crmath.375}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.375/} }
TY - JOUR AU - Zorgati, Hamdi TI - A $\Gamma $-convergence result for optimal design problems JO - Comptes Rendus. Mathématique PY - 2022 SP - 1145 EP - 1151 VL - 360 IS - G10 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.375/ DO - 10.5802/crmath.375 LA - en ID - CRMATH_2022__360_G10_1145_0 ER -
%0 Journal Article %A Zorgati, Hamdi %T A $\Gamma $-convergence result for optimal design problems %J Comptes Rendus. Mathématique %D 2022 %P 1145-1151 %V 360 %N G10 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.375/ %R 10.5802/crmath.375 %G en %F CRMATH_2022__360_G10_1145_0
Zorgati, Hamdi. A $\Gamma $-convergence result for optimal design problems. Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1145-1151. doi : 10.5802/crmath.375. http://www.numdam.org/articles/10.5802/crmath.375/
[1] Power-law approximation under differential constraints, SIAM J. Math. Anal., Volume 46 (2014) no. 2, pp. 1085-1115 | DOI | MR | Zbl
[2] On the lower semicontinuity of supremal functional under differential constraints, ESAIM, Control Optim. Calc. Var., Volume 21 (2015) no. 4, pp. 1053-1075 | DOI | MR | Zbl
[3] Relaxation for optimal design problems with non-standard growth, Appl. Math. Optim., Volume 80 (2019) no. 2, pp. 515-546 | DOI | MR | Zbl
[4] -convergence of power-law functionals, variational principles in , and applications, SIAM J. Math. Anal., Volume 39 (2008) no. 5, pp. 1550-1576 | DOI | MR | Zbl
[5] 3D-2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J., Volume 49 (2000) no. 4, pp. 1367-1404 | MR | Zbl
[6] 3D-2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization, C. R. Math. Acad. Sci. Paris, Volume 350 (2012) no. 23-24, pp. 1011-1016 | DOI | MR | Zbl
[7] -convergence and absolute minimizers for supremal functionals, ESAIM: COCVC, Volume 10 (2004), pp. 14-27 | MR | Zbl
[8] An Introduction to -Convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhauser, Boston, 1993 | DOI
[9] Sulla convergenza di alcune successioni di integrali del tipo dell area, Rend. Mat. (VI), Volume 8 (1975), pp. 277-294 | MR | Zbl
[10] 3D-2D asymptotic analysis of an optimal design problem for thin films, J. Reine Angew. Math., Volume 505 (1998), pp. 173-202 | DOI | MR | Zbl
[11] Dielectric breakdown: Optimal bounds, Proc. R. Soc. Lond., Ser. A, Volume 457 (2001) no. 2014, pp. 2317-2335 | DOI | MR | Zbl
[12] A note on optimal design for thin structures in the Orlicz-Sobolev setting, Integral methods in science and engineering. Volume 1. Theoretical techniques, Birkhäuser; Springer, 2017, pp. 161-171 | DOI | Zbl
[13] Variational Convergence for Nonlinear Shell Models with Directors and Related Semicontinuity and Relaxation Results, Arch. Ration. Mech. Anal., Volume 154 (2000) no. 2, pp. 101-134 | DOI | MR | Zbl
[14] Optimal design of fractured media with prescribed macroscopic strain, J. Math. Anal. Appl., Volume 449 (2017) no. 2, pp. 1094-1132 | DOI | MR | Zbl
Cité par Sources :