Équations aux dérivées partielles, Théorie du contrôle
Remote trajectory tracking of a rigid body in an incompressible fluid at low Reynolds number
Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1135-1144.

In this paper we study the motion of a rigid body driven by Newton’s law immersed in a stationary incompressible Stokes flow occupying a bounded simply connected domain. The aim is that of trajectory tracking of the solid by the means of a control in the form of Dirichlet boundary data on the outside boundary of the fluid domain. We show that it is possible to exactly achieve any smooth trajectory for the solid that stays away from the external boundary, by the means of such a remote control. The proof relies on some density methods for the Stokes system, as well as a reformulation of the solid equations into an ODE.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.374
Kolumbán, József J. 1

1 Budapest University of Technology and Economics, Department of Differential Equations, 1111 Budapest, Egry József u. 1 Building H, room H42
@article{CRMATH_2022__360_G10_1135_0,
     author = {Kolumb\'an, J\'ozsef J.},
     title = {Remote trajectory tracking of a rigid body in an incompressible fluid at low {Reynolds} number},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1135--1144},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G10},
     year = {2022},
     doi = {10.5802/crmath.374},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.374/}
}
TY  - JOUR
AU  - Kolumbán, József J.
TI  - Remote trajectory tracking of a rigid body in an incompressible fluid at low Reynolds number
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1135
EP  - 1144
VL  - 360
IS  - G10
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.374/
DO  - 10.5802/crmath.374
LA  - en
ID  - CRMATH_2022__360_G10_1135_0
ER  - 
%0 Journal Article
%A Kolumbán, József J.
%T Remote trajectory tracking of a rigid body in an incompressible fluid at low Reynolds number
%J Comptes Rendus. Mathématique
%D 2022
%P 1135-1144
%V 360
%N G10
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.374/
%R 10.5802/crmath.374
%G en
%F CRMATH_2022__360_G10_1135_0
Kolumbán, József J. Remote trajectory tracking of a rigid body in an incompressible fluid at low Reynolds number. Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1135-1144. doi : 10.5802/crmath.374. http://www.numdam.org/articles/10.5802/crmath.374/

[1] Alouges, François; DeSimone, Antonio; Lefebvre, Aline Optimal strokes for low Reynolds number swimmers: an example, J. Nonlinear Sci., Volume 18 (2008) no. 3, pp. 277-302 | DOI | MR | Zbl

[2] Alouges, François; Giraldi, Laetitia Enhanced controllability of low reynolds number swimmers in the presence of a wall, Acta Appl. Math., Volume 128 (2013) no. 1, pp. 153-179 | DOI | MR | Zbl

[3] Bossis, G.; Brady, John F. Dynamic simulation of sheared suspensions. I. General method, J. Chem. Phys., Volume 80 (1984), pp. 5141-5154 | DOI

[4] Boulakia, Muriel; Egloffe, Anne-Claire; Grandmont, Céline Stability estimates for the unique continuation property of the Stokes system and for an inverse boundary coefficient problem, Inverse Probl., Volume 29 (2013) no. 11, 115001, 21 pages | DOI | MR | Zbl

[5] Boulakia, Muriel; Guerrero, Sergio Local null controllability of a fluid-solid interaction problem in dimension 3, J. Eur. Math. Soc., Volume 15 (2013) no. 3, pp. 825-856 | DOI | MR | Zbl

[6] Boulakia, Muriel; Osses, Axel Local null controllability of a two-dimensional fluid-structure interaction problem, ESAIM, Control Optim. Calc. Var., Volume 14 (2008) no. 1, pp. 1-42 | DOI | Numdam | MR | Zbl

[7] Brenner, Howard; O’Neill, Michael E. On the Stokes resistance of multiparticle systems in a linear shear field, Chem. Eng. Sci., Volume 27 (1972) no. 7, pp. 1421-1439 | DOI

[8] Carling, J.; Williams, T. L.; Bowtell, G. Self-propelled anguilliform swimming: simultaneous solution of the two-dimentional Navier-Stokes equations and Newton’s laws of motion, J. Exp. Biol., Volume 201 (1998) no. 23, pp. 3143-3166 | DOI

[9] Coron, Jean-Michel; Marbach, Frédéric; Sueur, Franck Small time global exact null controllability of the Navier–Stokes equation with Navier slip-with-friction boundary conditions, J. Eur. Math. Soc., Volume 22 (2020) no. 5, pp. 1625-1673 | DOI | Zbl

[10] Fabre, Caroline; Lebeau, Gilles Prolongement unique des solutions de l’équation de Stokes, Commun. Partial Differ. Equations, Volume 21 (1996) no. 3-4, pp. 573-596 | DOI | Zbl

[11] Galdi, Giovanni P. On the steady self-propelled motion of a body in a viscous incompressible fluid, Arch. Ration. Mech. Anal., Volume 148 (1999) no. 1, pp. 53-88 | DOI | MR | Zbl

[12] Glass, Olivier; Horsin, Thierry Lagrangian controllability at low Reynolds number, ESAIM, Control Optim. Calc. Var., Volume 22 (2016) no. 4, pp. 1040-1053 | DOI | MR | Zbl

[13] Glass, Olivier; Kolumbán, József J.; Sueur, Franck Remote trajectory tracking of rigid bodies immersed in a two-dimensional perfect incompressible fluid, Pure Appl. Anal., Volume 3 (2021) no. 4, pp. 613-652 | DOI | MR | Zbl

[14] Hillairet, Matthieu Lack of collision between solid bodies in a 2D incompressible viscous flow, Commun. Partial Differ. Equations, Volume 32 (2007) no. 9, pp. 1345-1371 | DOI | MR | Zbl

[15] Hillairet, Matthieu; Takahashi, Takéo Collisions in three-dimensional fluid structure interaction problems, SIAM J. Math. Anal., Volume 40 (2009) no. 6, pp. 2451-2477 | DOI | MR | Zbl

[16] Höfer, Richard M.; Prange, Christophe; Sueur, Franck Motion of several slender rigid filaments in a Stokes flow, J. Éc. Polytech., Math., Volume 9 (2022), pp. 327-380 | DOI | MR | Zbl

[17] Imanuvilov, Oleg; Takahashi, Takéo Exact controllability of a fluid-rigid body system, J. Math. Pures Appl., Volume 87 (2007) no. 4, pp. 408-437 | DOI | MR | Zbl

[18] Kolumbán, József J. Control at a distance of the motion of a rigid body immersed in a two-dimensional viscous incompressible fluid, J. Differ. Equations, Volume 269 (2020) no. 1, pp. 764-831 | DOI | MR | Zbl

[19] Liu, H.; Kawachi, K. A numerical study of undulatory swimming, J. Comput. Phys., Volume 155 (1999) no. 2, pp. 223-247 | DOI | Zbl

[20] Lohéac, Jérôme; Munnier, Alexandre Controllability of 3D low Reynolds number swimmers, ESAIM, Control Optim. Calc. Var., Volume 20 (2014) no. 1, pp. 236-268 | DOI | Numdam | MR | Zbl

[21] Martín, Jorge San; Scheid, Jean-François; Takahashi, Takéo; Tucsnak, Marius An initial and boundary problem modeling fish-like swimming, Arch. Ration. Mech. Anal., Volume 188 (2008) no. 3, pp. 429-455 | DOI | MR | Zbl

[22] San Martin, Jorge; Takahashi, Takéo; Tucsnak, Marius A control theoretic approach to the swimming of microscopic organisms, Q. Appl. Math., Volume 65 (2007) no. 3, pp. 405-424 | MR | Zbl

[23] Temam, Roger Navier–Stokes Equations: Theory and numerical analysis, Studies in Mathematics and its Applications, 2, North-Holland, 1979 | Numdam

Cité par Sources :