In this paper we study the motion of a rigid body driven by Newton’s law immersed in a stationary incompressible Stokes flow occupying a bounded simply connected domain. The aim is that of trajectory tracking of the solid by the means of a control in the form of Dirichlet boundary data on the outside boundary of the fluid domain. We show that it is possible to exactly achieve any smooth trajectory for the solid that stays away from the external boundary, by the means of such a remote control. The proof relies on some density methods for the Stokes system, as well as a reformulation of the solid equations into an ODE.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G10_1135_0, author = {Kolumb\'an, J\'ozsef J.}, title = {Remote trajectory tracking of a rigid body in an incompressible fluid at low {Reynolds} number}, journal = {Comptes Rendus. Math\'ematique}, pages = {1135--1144}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G10}, year = {2022}, doi = {10.5802/crmath.374}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.374/} }
TY - JOUR AU - Kolumbán, József J. TI - Remote trajectory tracking of a rigid body in an incompressible fluid at low Reynolds number JO - Comptes Rendus. Mathématique PY - 2022 SP - 1135 EP - 1144 VL - 360 IS - G10 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.374/ DO - 10.5802/crmath.374 LA - en ID - CRMATH_2022__360_G10_1135_0 ER -
%0 Journal Article %A Kolumbán, József J. %T Remote trajectory tracking of a rigid body in an incompressible fluid at low Reynolds number %J Comptes Rendus. Mathématique %D 2022 %P 1135-1144 %V 360 %N G10 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.374/ %R 10.5802/crmath.374 %G en %F CRMATH_2022__360_G10_1135_0
Kolumbán, József J. Remote trajectory tracking of a rigid body in an incompressible fluid at low Reynolds number. Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1135-1144. doi : 10.5802/crmath.374. http://www.numdam.org/articles/10.5802/crmath.374/
[1] Optimal strokes for low Reynolds number swimmers: an example, J. Nonlinear Sci., Volume 18 (2008) no. 3, pp. 277-302 | DOI | MR | Zbl
[2] Enhanced controllability of low reynolds number swimmers in the presence of a wall, Acta Appl. Math., Volume 128 (2013) no. 1, pp. 153-179 | DOI | MR | Zbl
[3] Dynamic simulation of sheared suspensions. I. General method, J. Chem. Phys., Volume 80 (1984), pp. 5141-5154 | DOI
[4] Stability estimates for the unique continuation property of the Stokes system and for an inverse boundary coefficient problem, Inverse Probl., Volume 29 (2013) no. 11, 115001, 21 pages | DOI | MR | Zbl
[5] Local null controllability of a fluid-solid interaction problem in dimension 3, J. Eur. Math. Soc., Volume 15 (2013) no. 3, pp. 825-856 | DOI | MR | Zbl
[6] Local null controllability of a two-dimensional fluid-structure interaction problem, ESAIM, Control Optim. Calc. Var., Volume 14 (2008) no. 1, pp. 1-42 | DOI | Numdam | MR | Zbl
[7] On the Stokes resistance of multiparticle systems in a linear shear field, Chem. Eng. Sci., Volume 27 (1972) no. 7, pp. 1421-1439 | DOI
[8] Self-propelled anguilliform swimming: simultaneous solution of the two-dimentional Navier-Stokes equations and Newton’s laws of motion, J. Exp. Biol., Volume 201 (1998) no. 23, pp. 3143-3166 | DOI
[9] Small time global exact null controllability of the Navier–Stokes equation with Navier slip-with-friction boundary conditions, J. Eur. Math. Soc., Volume 22 (2020) no. 5, pp. 1625-1673 | DOI | Zbl
[10] Prolongement unique des solutions de l’équation de Stokes, Commun. Partial Differ. Equations, Volume 21 (1996) no. 3-4, pp. 573-596 | DOI | Zbl
[11] On the steady self-propelled motion of a body in a viscous incompressible fluid, Arch. Ration. Mech. Anal., Volume 148 (1999) no. 1, pp. 53-88 | DOI | MR | Zbl
[12] Lagrangian controllability at low Reynolds number, ESAIM, Control Optim. Calc. Var., Volume 22 (2016) no. 4, pp. 1040-1053 | DOI | MR | Zbl
[13] Remote trajectory tracking of rigid bodies immersed in a two-dimensional perfect incompressible fluid, Pure Appl. Anal., Volume 3 (2021) no. 4, pp. 613-652 | DOI | MR | Zbl
[14] Lack of collision between solid bodies in a 2D incompressible viscous flow, Commun. Partial Differ. Equations, Volume 32 (2007) no. 9, pp. 1345-1371 | DOI | MR | Zbl
[15] Collisions in three-dimensional fluid structure interaction problems, SIAM J. Math. Anal., Volume 40 (2009) no. 6, pp. 2451-2477 | DOI | MR | Zbl
[16] Motion of several slender rigid filaments in a Stokes flow, J. Éc. Polytech., Math., Volume 9 (2022), pp. 327-380 | DOI | MR | Zbl
[17] Exact controllability of a fluid-rigid body system, J. Math. Pures Appl., Volume 87 (2007) no. 4, pp. 408-437 | DOI | MR | Zbl
[18] Control at a distance of the motion of a rigid body immersed in a two-dimensional viscous incompressible fluid, J. Differ. Equations, Volume 269 (2020) no. 1, pp. 764-831 | DOI | MR | Zbl
[19] A numerical study of undulatory swimming, J. Comput. Phys., Volume 155 (1999) no. 2, pp. 223-247 | DOI | Zbl
[20] Controllability of 3D low Reynolds number swimmers, ESAIM, Control Optim. Calc. Var., Volume 20 (2014) no. 1, pp. 236-268 | DOI | Numdam | MR | Zbl
[21] An initial and boundary problem modeling fish-like swimming, Arch. Ration. Mech. Anal., Volume 188 (2008) no. 3, pp. 429-455 | DOI | MR | Zbl
[22] A control theoretic approach to the swimming of microscopic organisms, Q. Appl. Math., Volume 65 (2007) no. 3, pp. 405-424 | MR | Zbl
[23] Navier–Stokes Equations: Theory and numerical analysis, Studies in Mathematics and its Applications, 2, North-Holland, 1979 | Numdam
Cité par Sources :