We prove a duality result for the analytic cohomology of Lie groups over non-archimedean fields acting on locally convex vector spaces by combining Tamme’s non-archimedean van Est comparison morphism with Hazewinkel’s duality result for Lie algebra cohomology.
Révisé le :
Accepté le :
Publié le :
Mots clés : analytic cohomology, duality
@article{CRMATH_2022__360_G11_1213_0, author = {Thomas, Oliver}, title = {Duality for $K$-analytic {Group} {Cohomology} of $p$-adic {Lie} {Groups}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1213--1226}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G11}, year = {2022}, doi = {10.5802/crmath.373}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.373/} }
TY - JOUR AU - Thomas, Oliver TI - Duality for $K$-analytic Group Cohomology of $p$-adic Lie Groups JO - Comptes Rendus. Mathématique PY - 2022 SP - 1213 EP - 1226 VL - 360 IS - G11 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.373/ DO - 10.5802/crmath.373 LA - en ID - CRMATH_2022__360_G11_1213_0 ER -
%0 Journal Article %A Thomas, Oliver %T Duality for $K$-analytic Group Cohomology of $p$-adic Lie Groups %J Comptes Rendus. Mathématique %D 2022 %P 1213-1226 %V 360 %N G11 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.373/ %R 10.5802/crmath.373 %G en %F CRMATH_2022__360_G11_1213_0
Thomas, Oliver. Duality for $K$-analytic Group Cohomology of $p$-adic Lie Groups. Comptes Rendus. Mathématique, Tome 360 (2022) no. G11, pp. 1213-1226. doi : 10.5802/crmath.373. http://www.numdam.org/articles/10.5802/crmath.373/
[1] Multivariable -modules and locally analytic vectors, Duke Math. J., Volume 165 (2016) no. 18, pp. 3567-3595 | DOI | MR
[2] Éléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 à 7), Actualités Scientifiques et Industrielles, 1333, Hermann, 1967, 97 pages | MR
[3] Elements of Mathematics. Lie groups and Lie algebras. Chapters 1–3, Springer, 1989, xviii+450 pages (Translated from the French, Reprint of the 1975 edition) | MR
[4] Elements of Mathematics.Algebra I. Chapters 1–3, Springer, 1998, xxiv+709 pages (Translated from the French, Reprint of the 1989 English translation) | MR
[5] Finiteness theorems for the cohomology of an overconvergent isocrystal on a curve, Ann. Sci. Éc. Norm. Supér., Volume 31 (1998) no. 6, pp. 717-763 | DOI | Numdam | MR | Zbl
[6] Locally analytic vectors in representations of locally -adic analytic groups, Mem. Am. Math. Soc., Volume 248 (2017) no. 1175, p. iv+158 | DOI | MR | Zbl
[7] A duality theorem for cohomology of Lie algebras, Mat. Sb., N. Ser., Volume 83 (125) (1970), pp. 639-644 | MR
[8] Herr-complexes in the Lubin–Tate setting, Mathematika, Volume 68 (2022) no. 1, pp. 74-147 | DOI | MR
[9] Einige Resultate über die topologischen Darstellungen -adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem -adischen Körper, Schriftenreihe des Mathematischen Instituts der Universität Münster. 3. Serie, 23, Univ. Münster, Mathematisches Institut, 1999, x+111 pages | MR
[10] Groupes analytiques -adiques, Publ. Math., Inst. Hautes Étud. Sci. (1965) no. 26, pp. 389-603 | Numdam | MR | Zbl
[11] Locally convex spaces over non-Archimedean valued fields, Cambridge Studies in Advanced Mathematics, 119, Cambridge University Press, 2010, xiv+472 pages | DOI | MR
[12] Nonarchimedean functional analysis, Springer Monographs in Mathematics, Springer, 2002, vi+156 pages | DOI | MR
[13] Lie algebras and Lie groups, Lecture Notes in Mathematics, 1500, Springer, 1992, viii+168 pages (1964 lectures given at Harvard University) | DOI | MR
[14] On an analytic version of Lazard’s isomorphism, Algebra Number Theory, Volume 9 (2015) no. 4, pp. 937-956 | DOI | MR | Zbl
[15] On Analytic and Iwasawa Cohomology, Ph. D. Thesis, Ruprecht Karl University of Heidelberg (2019) | DOI
[16] Cohomology of Topologised Monoids, Math. Z., Volume 301 (2022), pp. 2793-2840 | DOI | MR | Zbl
Cité par Sources :