Analyse harmonique
Integrability properties of quasi-regular representations of NA groups
Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1125-1134.

Let G=NA, where N is a graded Lie group and A= + acts on N via homogeneous dilations. The quasi-regular representation π=ind A G (1) of G can be realised to act on L 2 (N). It is shown that for a class of analysing vectors the associated wavelet transform defines an isometry from L 2 (N) into L 2 (G) and that the integral kernel of the corresponding orthogonal projector has polynomial off-diagonal decay. The obtained reproducing formula is instrumental for obtaining decomposition theorems for function spaces on nilpotent groups.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.372
Classification : 22E15, 22E27, 43A80, 44A35
van Velthoven, Jordy Timo 1

1 Delft University of Technology, Mekelweg 4, Building 36, 2628 CD Delft, The Netherlands
@article{CRMATH_2022__360_G10_1125_0,
     author = {van Velthoven, Jordy Timo},
     title = {Integrability properties of quasi-regular representations of $NA$ groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1125--1134},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G10},
     year = {2022},
     doi = {10.5802/crmath.372},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.372/}
}
TY  - JOUR
AU  - van Velthoven, Jordy Timo
TI  - Integrability properties of quasi-regular representations of $NA$ groups
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1125
EP  - 1134
VL  - 360
IS  - G10
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.372/
DO  - 10.5802/crmath.372
LA  - en
ID  - CRMATH_2022__360_G10_1125_0
ER  - 
%0 Journal Article
%A van Velthoven, Jordy Timo
%T Integrability properties of quasi-regular representations of $NA$ groups
%J Comptes Rendus. Mathématique
%D 2022
%P 1125-1134
%V 360
%N G10
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.372/
%R 10.5802/crmath.372
%G en
%F CRMATH_2022__360_G10_1125_0
van Velthoven, Jordy Timo. Integrability properties of quasi-regular representations of $NA$ groups. Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1125-1134. doi : 10.5802/crmath.372. http://www.numdam.org/articles/10.5802/crmath.372/

[1] Bahouri, Hajer; Fermanian-Kammerer, Clotilde; Gallagher, Isabelle Refined inequalities on graded Lie groups, C. R. Math. Acad. Sci. Paris, Volume 350 (2012) no. 7-8, pp. 393-397 | DOI | MR | Zbl

[2] Bruna, Joaquim; Cufí, Julia; Führ, Hartmut; Miró, M. Lara Characterizing abelian admissible groups, J. Geom. Anal., Volume 25 (2015) no. 2, pp. 1045-1074 | DOI | MR | Zbl

[3] Bruno, Tommaso Homogeneous algebras via heat kernel estimates (2021) (https://arxiv.org/abs/2102.11613, to appear in Trans. Am. Math. Soc.)

[4] Calzi, Mattia; Ricci, Fulvio Functional calculus on non-homogeneous operators on nilpotent groups, Ann. Mat. Pura Appl., Volume 200 (2021) no. 4, pp. 1517-1571 | DOI | MR | Zbl

[5] Cardona, Duván; Ruzhansky, Michael Multipliers for Besov spaces on graded Lie groups., C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 4, pp. 400-405 | DOI | MR | Zbl

[6] Christensen, Jens G.; Mayeli, Azita; Ólafsson, Gestur Coorbit description and atomic decomposition of Besov spaces, Numer. Funct. Anal. Optim., Volume 33 (2012) no. 7-9, pp. 847-871 | DOI | MR | Zbl

[7] Currey, Bradley N. Admissibility for a class of quasiregular representations, Can. J. Math., Volume 59 (2007) no. 5, pp. 917-942 | DOI | MR | Zbl

[8] Currey, Bradley N.; Führ, Hartmut; Taylor, Keith F. Integrable wavelet transforms with abelian dilation groups, J. Lie Theory, Volume 26 (2016) no. 2, pp. 567-595 | MR | Zbl

[9] Currey, Bradley N.; Oussa, Vignon Admissibility for monomial representations of exponential Lie groups, J. Lie Theory, Volume 22 (2012) no. 2, pp. 481-487 | MR | Zbl

[10] Duflo, Michel; Moore, Calvin C. On the regular representation of a nonunimodular locally compact group, J. Funct. Anal., Volume 21 (1976), pp. 209-243 | DOI | MR | Zbl

[11] Eymard, Pierre; Terp, Marianne La transformation de Fourier et son inverse sur le groupe des ax+b d’un corps local, Analyse harmonique sur les groupes de Lie II (Lecture Notes in Mathematics), Volume 739, Springer, 1979, pp. 207-248 | DOI | MR | Zbl

[12] Feichtinger, Hans G.; Gröchenig, Karlheinz H. Banach spaces related to integrable group representations and their atomic decompositions. I, J. Funct. Anal., Volume 86 (1989) no. 2, pp. 307-340 | DOI | MR | Zbl

[13] Fischer, Veronique; Ruzhansky, Michael Progress in Mathematics, 314, Birkhäuser/Springer, 2016, xiii+557 pages | DOI | Zbl

[14] Fischer, Veronique; Ruzhansky, Michael Sobolev spaces on graded Lie groups, Ann. Inst. Fourier, Volume 67 (2017) no. 4, pp. 1671-1723 | DOI | Numdam | MR | Zbl

[15] Folland, Gerald B. Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., Volume 13 (1975), pp. 161-207 | DOI | MR | Zbl

[16] Folland, Gerald B. Lipschitz classes and Poisson integrals on stratified groups, Stud. Math., Volume 66 (1979), pp. 37-55 | DOI | MR | Zbl

[17] Folland, Gerald B.; Stein, Elias M. Hardy spaces on homogeneous groups, Mathematical Notes, 28, Princeton University Press, 1982 | Zbl

[18] Frazier, Michael; Jawerth, Björn; Weiss, Guido L. Littlewood-Paley theory and the study of function spaces, Regional Conference Series in Mathematics, 79, American Mathematical Society, 1991, vii+132 pages | DOI | Zbl

[19] Führ, Hartmut Abstract harmonic analysis of continuous wavelet transforms, Lect. Notes Math., 1863, Springer, 2005, x+193 pages | DOI | Zbl

[20] Führ, Hartmut Generalized Calderón conditions and regular orbit spaces, Colloq. Math., Volume 120 (2010) no. 1, pp. 103-126 | DOI | Zbl

[21] Führ, Hartmut Coorbit spaces and wavelet coefficient decay over general dilation groups, Trans. Am. Math. Soc., Volume 367 (2015) no. 10, pp. 7373-7401 | DOI | MR | Zbl

[22] Führ, Hartmut; Mayeli, Azita Homogeneous Besov spaces on stratified Lie groups and their wavelet characterization, J. Funct. Spaces Appl., Volume 2012 (2012), 523586, 41 pages | MR | Zbl

[23] Führ, Hartmut; van Velthoven, Jordy Timo Coorbit spaces associated to integrably admissible dilation groups, J. Anal. Math., Volume 144 (2021) no. 1, pp. 351-395 | DOI | MR | Zbl

[24] Furioli, Giulia; Melzi, Camillo; Veneruso, Alessandro Littlewood–Paley decompositions and Besov spaces on Lie groups of polynomial growth, Math. Nachr., Volume 279 (2006) no. 9-10, pp. 1028-1040 | DOI | MR | Zbl

[25] Geller, Daryl; Mayeli, Azita Continuous wavelets and frames on stratified Lie groups. I, J. Fourier Anal. Appl., Volume 12 (2006) no. 5, pp. 543-579 | DOI | MR | Zbl

[26] Gilbert, John E.; Han, Yong Sheng; Hogan, Jeffrey A.; Lakey, Joseph D.; Weiland, David; Weiss, Guido L. Smooth molecular decompositions of functions and singular integral operators, Mem. Am. Math. Soc., 742, American Mathematical Society, 2002, 74 pages | Zbl

[27] Gröchenig, Karlheinz H. Describing functions: Atomic decompositions versus frames, Monatsh. Math., Volume 112 (1991) no. 1, pp. 1-42 | DOI | MR | Zbl

[28] Gröchenig, Karlheinz H.; Kaniuth, Eberhard; Taylor, Keith F. Compact open sets in duals and projections in L 1 -algebras of certain semi-direct product groups, Math. Proc. Camb. Philos. Soc., Volume 111 (1992) no. 3, pp. 545-556 | DOI | MR | Zbl

[29] Holschneider, Matthias Wavelets. An analysis tool, Oxford Math. Monogr., Clarendon Press, 1995, xiii+423 pages | Zbl

[30] Hu, Guorong Homogeneous Triebel-Lizorkin spaces on stratified Lie groups, J. Funct. Spaces Appl., Volume 2013 (2013), 475103, 16 pages | MR | Zbl

[31] Hulanicki, Andrzej A functional calculus for Rockland operators on nilpotent Lie groups, Stud. Math., Volume 78 (1984), pp. 253-266 | DOI | MR | Zbl

[32] Kaniuth, Eberhard; Taylor, Keith F. Minimal projections in L 1 -algebras and open points in the dual spaces of semi-direct product groups, J. Lond. Math. Soc., Volume 53 (1996) no. 1, pp. 141-157 | DOI | MR | Zbl

[33] Krantz, Steven Lipschitz spaces on stratified groups, Trans. Am. Math. Soc., Volume 269 (1982), pp. 39-66 | DOI | MR | Zbl

[34] Laugesen, Richard S.; Weaver, Nik; Weiss, Guido L.; Wilson, Edward N. A characterization of the higher dimensional groups associated with continuous wavelets, J. Geom. Anal., Volume 12 (2002) no. 1, pp. 89-102 | DOI | MR | Zbl

[35] Lipsman, Ronald L. Harmonic analysis on exponential solvable homogeneous spaces: The algebraic or symmetric cases, Pac. J. Math., Volume 140 (1989) no. 1, pp. 117-147 | DOI | MR | Zbl

[36] Nagel, Alexander; Ricci, Fulvio; Stein, Elias M. Harmonic analysis and fundamental solutions on nilpotent Lie groups, Analysis and partial differential equations (Lecture Notes in Pure and Applied Mathematics), Volume 122, Marcel Dekker, 1990, pp. 249-275 | MR | Zbl

[37] Oussa, Vignon Admissibility for quasiregular representations of exponential solvable Lie groups, Colloq. Math., Volume 131 (2013) no. 2, pp. 241-264 | DOI | MR | Zbl

[38] Romero, José Luis; van Velthoven, Jordy Timo; Voigtlaender, Felix On dual molecules and convolution-dominated operators, J. Funct. Anal., Volume 280 (2021) no. 10, 108963, 57 pages | MR | Zbl

[39] Saka, Koichi Besov spaces and Sobolev spaces on a nilpotent Lie group, Tôhoku Math. J., Volume 31 (1979), pp. 383-437 | MR | Zbl

[40] Schulz, Eckart; Taylor, Keith F. Extensions of the Heisenberg group and wavelet analysis in the plane, Spline functions and the theory of wavelets, American Mathematical Society, 1999, pp. 217-225 | DOI | Zbl

Cité par Sources :