Let , where is a graded Lie group and acts on via homogeneous dilations. The quasi-regular representation of can be realised to act on . It is shown that for a class of analysing vectors the associated wavelet transform defines an isometry from into and that the integral kernel of the corresponding orthogonal projector has polynomial off-diagonal decay. The obtained reproducing formula is instrumental for obtaining decomposition theorems for function spaces on nilpotent groups.
Accepté le :
Publié le :
@article{CRMATH_2022__360_G10_1125_0, author = {van Velthoven, Jordy Timo}, title = {Integrability properties of quasi-regular representations of $NA$ groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {1125--1134}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G10}, year = {2022}, doi = {10.5802/crmath.372}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.372/} }
TY - JOUR AU - van Velthoven, Jordy Timo TI - Integrability properties of quasi-regular representations of $NA$ groups JO - Comptes Rendus. Mathématique PY - 2022 SP - 1125 EP - 1134 VL - 360 IS - G10 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.372/ DO - 10.5802/crmath.372 LA - en ID - CRMATH_2022__360_G10_1125_0 ER -
%0 Journal Article %A van Velthoven, Jordy Timo %T Integrability properties of quasi-regular representations of $NA$ groups %J Comptes Rendus. Mathématique %D 2022 %P 1125-1134 %V 360 %N G10 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.372/ %R 10.5802/crmath.372 %G en %F CRMATH_2022__360_G10_1125_0
van Velthoven, Jordy Timo. Integrability properties of quasi-regular representations of $NA$ groups. Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1125-1134. doi : 10.5802/crmath.372. http://www.numdam.org/articles/10.5802/crmath.372/
[1] Refined inequalities on graded Lie groups, C. R. Math. Acad. Sci. Paris, Volume 350 (2012) no. 7-8, pp. 393-397 | DOI | MR | Zbl
[2] Characterizing abelian admissible groups, J. Geom. Anal., Volume 25 (2015) no. 2, pp. 1045-1074 | DOI | MR | Zbl
[3] Homogeneous algebras via heat kernel estimates (2021) (https://arxiv.org/abs/2102.11613, to appear in Trans. Am. Math. Soc.)
[4] Functional calculus on non-homogeneous operators on nilpotent groups, Ann. Mat. Pura Appl., Volume 200 (2021) no. 4, pp. 1517-1571 | DOI | MR | Zbl
[5] Multipliers for Besov spaces on graded Lie groups., C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 4, pp. 400-405 | DOI | MR | Zbl
[6] Coorbit description and atomic decomposition of Besov spaces, Numer. Funct. Anal. Optim., Volume 33 (2012) no. 7-9, pp. 847-871 | DOI | MR | Zbl
[7] Admissibility for a class of quasiregular representations, Can. J. Math., Volume 59 (2007) no. 5, pp. 917-942 | DOI | MR | Zbl
[8] Integrable wavelet transforms with abelian dilation groups, J. Lie Theory, Volume 26 (2016) no. 2, pp. 567-595 | MR | Zbl
[9] Admissibility for monomial representations of exponential Lie groups, J. Lie Theory, Volume 22 (2012) no. 2, pp. 481-487 | MR | Zbl
[10] On the regular representation of a nonunimodular locally compact group, J. Funct. Anal., Volume 21 (1976), pp. 209-243 | DOI | MR | Zbl
[11] La transformation de Fourier et son inverse sur le groupe des ax+b d’un corps local, Analyse harmonique sur les groupes de Lie II (Lecture Notes in Mathematics), Volume 739, Springer, 1979, pp. 207-248 | DOI | MR | Zbl
[12] Banach spaces related to integrable group representations and their atomic decompositions. I, J. Funct. Anal., Volume 86 (1989) no. 2, pp. 307-340 | DOI | MR | Zbl
[13] Progress in Mathematics, 314, Birkhäuser/Springer, 2016, xiii+557 pages | DOI | Zbl
[14] Sobolev spaces on graded Lie groups, Ann. Inst. Fourier, Volume 67 (2017) no. 4, pp. 1671-1723 | DOI | Numdam | MR | Zbl
[15] Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., Volume 13 (1975), pp. 161-207 | DOI | MR | Zbl
[16] Lipschitz classes and Poisson integrals on stratified groups, Stud. Math., Volume 66 (1979), pp. 37-55 | DOI | MR | Zbl
[17] Hardy spaces on homogeneous groups, Mathematical Notes, 28, Princeton University Press, 1982 | Zbl
[18] Littlewood-Paley theory and the study of function spaces, Regional Conference Series in Mathematics, 79, American Mathematical Society, 1991, vii+132 pages | DOI | Zbl
[19] Abstract harmonic analysis of continuous wavelet transforms, Lect. Notes Math., 1863, Springer, 2005, x+193 pages | DOI | Zbl
[20] Generalized Calderón conditions and regular orbit spaces, Colloq. Math., Volume 120 (2010) no. 1, pp. 103-126 | DOI | Zbl
[21] Coorbit spaces and wavelet coefficient decay over general dilation groups, Trans. Am. Math. Soc., Volume 367 (2015) no. 10, pp. 7373-7401 | DOI | MR | Zbl
[22] Homogeneous Besov spaces on stratified Lie groups and their wavelet characterization, J. Funct. Spaces Appl., Volume 2012 (2012), 523586, 41 pages | MR | Zbl
[23] Coorbit spaces associated to integrably admissible dilation groups, J. Anal. Math., Volume 144 (2021) no. 1, pp. 351-395 | DOI | MR | Zbl
[24] Littlewood–Paley decompositions and Besov spaces on Lie groups of polynomial growth, Math. Nachr., Volume 279 (2006) no. 9-10, pp. 1028-1040 | DOI | MR | Zbl
[25] Continuous wavelets and frames on stratified Lie groups. I, J. Fourier Anal. Appl., Volume 12 (2006) no. 5, pp. 543-579 | DOI | MR | Zbl
[26] Smooth molecular decompositions of functions and singular integral operators, Mem. Am. Math. Soc., 742, American Mathematical Society, 2002, 74 pages | Zbl
[27] Describing functions: Atomic decompositions versus frames, Monatsh. Math., Volume 112 (1991) no. 1, pp. 1-42 | DOI | MR | Zbl
[28] Compact open sets in duals and projections in -algebras of certain semi-direct product groups, Math. Proc. Camb. Philos. Soc., Volume 111 (1992) no. 3, pp. 545-556 | DOI | MR | Zbl
[29] Wavelets. An analysis tool, Oxford Math. Monogr., Clarendon Press, 1995, xiii+423 pages | Zbl
[30] Homogeneous Triebel-Lizorkin spaces on stratified Lie groups, J. Funct. Spaces Appl., Volume 2013 (2013), 475103, 16 pages | MR | Zbl
[31] A functional calculus for Rockland operators on nilpotent Lie groups, Stud. Math., Volume 78 (1984), pp. 253-266 | DOI | MR | Zbl
[32] Minimal projections in -algebras and open points in the dual spaces of semi-direct product groups, J. Lond. Math. Soc., Volume 53 (1996) no. 1, pp. 141-157 | DOI | MR | Zbl
[33] Lipschitz spaces on stratified groups, Trans. Am. Math. Soc., Volume 269 (1982), pp. 39-66 | DOI | MR | Zbl
[34] A characterization of the higher dimensional groups associated with continuous wavelets, J. Geom. Anal., Volume 12 (2002) no. 1, pp. 89-102 | DOI | MR | Zbl
[35] Harmonic analysis on exponential solvable homogeneous spaces: The algebraic or symmetric cases, Pac. J. Math., Volume 140 (1989) no. 1, pp. 117-147 | DOI | MR | Zbl
[36] Harmonic analysis and fundamental solutions on nilpotent Lie groups, Analysis and partial differential equations (Lecture Notes in Pure and Applied Mathematics), Volume 122, Marcel Dekker, 1990, pp. 249-275 | MR | Zbl
[37] Admissibility for quasiregular representations of exponential solvable Lie groups, Colloq. Math., Volume 131 (2013) no. 2, pp. 241-264 | DOI | MR | Zbl
[38] On dual molecules and convolution-dominated operators, J. Funct. Anal., Volume 280 (2021) no. 10, 108963, 57 pages | MR | Zbl
[39] Besov spaces and Sobolev spaces on a nilpotent Lie group, Tôhoku Math. J., Volume 31 (1979), pp. 383-437 | MR | Zbl
[40] Extensions of the Heisenberg group and wavelet analysis in the plane, Spline functions and the theory of wavelets, American Mathematical Society, 1999, pp. 217-225 | DOI | Zbl
Cité par Sources :