Let be a prime, and let be the Legendre symbol. Let and . We mainly prove that
where is the number of positive integers with , and with is the least nonnegative residue of modulo .
Accepté le :
Publié le :
@article{CRMATH_2022__360_G9_1065_0, author = {Hou, Qing-Hu and Pan, Hao and Sun, Zhi-Wei}, title = {A new theorem on quadratic residues modulo primes}, journal = {Comptes Rendus. Math\'ematique}, pages = {1065--1069}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G9}, year = {2022}, doi = {10.5802/crmath.371}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.371/} }
TY - JOUR AU - Hou, Qing-Hu AU - Pan, Hao AU - Sun, Zhi-Wei TI - A new theorem on quadratic residues modulo primes JO - Comptes Rendus. Mathématique PY - 2022 SP - 1065 EP - 1069 VL - 360 IS - G9 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.371/ DO - 10.5802/crmath.371 LA - en ID - CRMATH_2022__360_G9_1065_0 ER -
%0 Journal Article %A Hou, Qing-Hu %A Pan, Hao %A Sun, Zhi-Wei %T A new theorem on quadratic residues modulo primes %J Comptes Rendus. Mathématique %D 2022 %P 1065-1069 %V 360 %N G9 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.371/ %R 10.5802/crmath.371 %G en %F CRMATH_2022__360_G9_1065_0
Hou, Qing-Hu; Pan, Hao; Sun, Zhi-Wei. A new theorem on quadratic residues modulo primes. Comptes Rendus. Mathématique, Tome 360 (2022) no. G9, pp. 1065-1069. doi : 10.5802/crmath.371. http://www.numdam.org/articles/10.5802/crmath.371/
[1] A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, 138, Springer, 1993 | DOI | Zbl
[2] The Higher Arithmetic. An Introduction to the Theory of Numbers, Cambridge University Press, 2008
[3] Sequence A320159 at OEIS (On-Line Encyclopedia of Integer Sequences), 2018 (http://oeis.org/A320159)
[4] A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics, 84, Springer, 1990 | DOI
[5] Quadratic residues and related permutations and identities, Finite Fields Appl., Volume 59 (2019), pp. 246-283 | MR | Zbl
[6] Quadratic residues and quartic residues modulo primes, Int. J. Number Theory, Volume 16 (2020) no. 8, pp. 1833-1858 | MR | Zbl
Cité par Sources :