Dans cette note, on montre qu’une variété riemannienne fermée munie d’une structure spin n’admet pas de remplissage spinoriel satisfaisant la condition d’énergie dominante (DEC) si une certaine fonction, généralisant la courbure moyenne, est suffisamment grande.
In this note, we show that a closed spin Riemannian manifold does not admit a spin fill-in satisfying the dominant energy condition (DEC) if a certain generalized mean curvature function is point-wise large.
Accepté le :
Publié le :
@article{CRMATH_2022__360_G9_1049_0, author = {Raulot, Simon}, title = {Nonexistence of {DEC} spin fill-ins}, journal = {Comptes Rendus. Math\'ematique}, pages = {1049--1054}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G9}, year = {2022}, doi = {10.5802/crmath.366}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.366/} }
TY - JOUR AU - Raulot, Simon TI - Nonexistence of DEC spin fill-ins JO - Comptes Rendus. Mathématique PY - 2022 SP - 1049 EP - 1054 VL - 360 IS - G9 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.366/ DO - 10.5802/crmath.366 LA - en ID - CRMATH_2022__360_G9_1049_0 ER -
Raulot, Simon. Nonexistence of DEC spin fill-ins. Comptes Rendus. Mathématique, Tome 360 (2022) no. G9, pp. 1049-1054. doi : 10.5802/crmath.366. http://www.numdam.org/articles/10.5802/crmath.366/
[1] Boundary value problems for elliptic differential operators of first order, Surveys in differential geometry. Vol. XVII (Surveys in Differential Geometry), Volume 17, International Press, 2012, pp. 1-78 | DOI | MR | Zbl
[2] New definition of quasilocal mass, Phys. Rev. Lett., Volume 62 (1989) no. 20, pp. 2346-2348 | DOI | MR
[3] Energy in general relativity, Tsing Hua lectures on geometry & analysis (Hsinchu, 1990–1991), International Press, 1997, pp. 5-27 | MR | Zbl
[4] A spinorial approach to Riemannian and conformal geometry, EMS Monographs in Mathematics, European Mathematical Society, 2015, ix+452 pages | DOI
[5] On the spinor representation of surfaces in Euclidean -space, J. Geom. Phys., Volume 28 (1998) no. 1-2, pp. 143-157 | DOI | MR | Zbl
[6] The Dirac spectrum, Lecture Notes in Mathematics, 1976, Springer, 2009, xvi+156 pages | DOI
[7] Scalar curvature of manifolds with boundaries: natural questions and artificial constructions (2018) (https://arxiv.org/abs/1811.04311)
[8] Dirac operators on hypersurfaces of manifolds with negative scalar curvature, Ann. Global Anal. Geom., Volume 23 (2003) no. 3, pp. 247-264 | DOI | MR | Zbl
[9] Dirac operator on embedded hypersurfaces, Math. Res. Lett., Volume 8 (2001) no. 1-2, pp. 195-208 | DOI | MR | Zbl
[10] Nonexistence of NNSC fill-ins with large mean curvature, Proc. Am. Math. Soc., Volume 149 (2021) no. 6, pp. 2705-2709 | DOI | MR | Zbl
[11] On the structure of manifolds with positive scalar curvature, Manuscr. Math., Volume 28 (1979) no. 1-3, pp. 159-183 | DOI | MR | Zbl
[12] Positive scalar curvature and minimal hypersurface singularities, Surveys in differential geometry 2019. Differential geometry, Calabi-Yau theory, and general relativity (Surveys in Differential Geometry), Volume 24, International Press, 2019, pp. 441-480
[13] Total mean curvature of the boundary and nonnegative scalar curvature fill-ins, J. Reine Angew. Math., Volume 784 (2022), pp. 215-250 | DOI | MR | Zbl
[14] On a spacetime positive mass theorem with corners (2022) (https://arxiv.org/abs/2109.11070)
[15] A new proof of the positive energy theorem, Commun. Math. Phys., Volume 80 (1981) no. 3, pp. 381-402 | DOI | MR | Zbl
Cité par Sources :