Analyse et géométrie complexes
On quasi-Herglotz functions in one variable
[Sur les fonctions quasi-Herglotz d’une variable]
Comptes Rendus. Mathématique, Tome 360 (2022) no. G9, pp. 937-970.

Dans le présent article, la classe des fonctions (complexes) quasi-Herglotz est présentée comme l’espace vectoriel complexe engendré par le cône convexe des fonctions de Herglotz usuelles. Nous démontrons des théorèmes de caractérisation, en particulier une caractérisation analytique. Les sous-classes des fonctions quasi-Herglotz qui sont identiquement nulles dans un demi-plan ainsi que les fonctions quasi-Herglotz rationnelles sont étudiées en détail. De plus, nous faisons le lien avec d’autres domaines tels que les espaces de Hardy avec poids, les fonctions définissables, la transformée de Cauchy sur le cercle unité, les identités « somme-règle » et les fonctions de Herglotz à valeur matricielle.

In this paper, the class of (complex) quasi-Herglotz functions is introduced as the complex vector space generated by the convex cone of ordinary Herglotz functions. We prove characterization theorems, in particular, an analytic characterization. The subclasses of quasi-Herglotz functions that are identically zero in one half-plane as well as rational quasi-Herglotz functions are investigated in detail. Moreover, we relate to other areas such as weighted Hardy spaces, definitizable functions, the Cauchy transform on the unit circle, sum-rule identities and matrix-valued Herglotz functions.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.364
Classification : 30A86, 30A99
Luger, Annemarie 1 ; Nedic, Mitja 1

1 Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden
@article{CRMATH_2022__360_G9_937_0,
     author = {Luger, Annemarie and Nedic, Mitja},
     title = {On {quasi-Herglotz} functions in one variable},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {937--970},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G9},
     year = {2022},
     doi = {10.5802/crmath.364},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.364/}
}
TY  - JOUR
AU  - Luger, Annemarie
AU  - Nedic, Mitja
TI  - On quasi-Herglotz functions in one variable
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 937
EP  - 970
VL  - 360
IS  - G9
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.364/
DO  - 10.5802/crmath.364
LA  - en
ID  - CRMATH_2022__360_G9_937_0
ER  - 
%0 Journal Article
%A Luger, Annemarie
%A Nedic, Mitja
%T On quasi-Herglotz functions in one variable
%J Comptes Rendus. Mathématique
%D 2022
%P 937-970
%V 360
%N G9
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.364/
%R 10.5802/crmath.364
%G en
%F CRMATH_2022__360_G9_937_0
Luger, Annemarie; Nedic, Mitja. On quasi-Herglotz functions in one variable. Comptes Rendus. Mathématique, Tome 360 (2022) no. G9, pp. 937-970. doi : 10.5802/crmath.364. http://www.numdam.org/articles/10.5802/crmath.364/

[1] Akhiezer, Naum I. The classical moment problem and some related questions in analysis, University Mathematical Monographs, Hafner Publishing Co., 1965 | Zbl

[2] Akhiezer, Naum I.; Glazman, Izrail M. Theory of linear operators in Hilbert space, Dover Publications, 1993, xiv+147, iv+218 pages

[3] Albeverio, Sergio; Hryniv, Rostyslav; Mykytyuk, Yaroslav Scattering theory for Schrödinger operators with Bessel-type potentials, J. Reine Angew. Math., Volume 666 (2012), pp. 83-113 | DOI

[4] Aronszajn, Nachman; Donoghue, William F. On exponential representations of analytic functions in the upper half-plane with positive imaginary part, J. Anal. Math., Volume 5 (1956), pp. 321-388 | DOI

[5] Ball, Joseph A.; Bolotnikov, Vladimir Canonical de Branges–Rovnyak model transfer-function realization for multivariable Schur-class functions, Hilbert spaces of analytic functions (CRM Proceedings & Lecture Notes), Volume 51, American Mathematical Society, 2010, pp. 1-39 | DOI | MR | Zbl

[6] Behrndt, Jussi; Gesztesy, Fritz; Nakamura, Shu Spectral shift functions and Dirichlet-to-Neumann maps, Math. Ann., Volume 371 (2018) no. 3-4, pp. 1255-1300 | DOI | MR | Zbl

[7] Bernland, Anders; Luger, Annemarie; Gustafsson, Mats Sum rules and constraints on passive systems, J. Phys. A, Math. Theor., Volume 44 (2011) no. 14, 145205, 20 pages | DOI | MR | Zbl

[8] Bogachev, Vladimir I. Measure theory. Vol. I, II, Springer, 2007 | DOI

[9] Cauer, Wilhelm The Poisson integral for functions with positive real part, Bull. Am. Math. Soc., Volume 38 (1932) no. 10, pp. 713-717 | DOI | MR | Zbl

[10] Cima, Joseph A.; Matheson, Alec L.; Ross, William T. The Cauchy transform, Mathematical Surveys and Monographs, 125, American Mathematical Society, 2006, x+272 pages | DOI

[11] Damanik, David; Killip, Rowan; Simon, Barry Perturbations of orthogonal polynomials with periodic recursion coefficients, Ann. Math., Volume 171 (2010) no. 3, pp. 1931-2010 | DOI | MR | Zbl

[12] Dieudonné, Jean Treatise on analysis. Vol. II, Pure and Applied Mathematics, 10-II, Academic Press Inc., 1976 (enlarged and corrected printing, translated by I. G. Macdonald)

[13] Dijksma, A.; Langer, Heinz; de Snoo, Hendrik S. V. Representations of holomorphic operator functions by means of resolvents of unitary or selfadjoint operators in Kreĭn spaces, Operators in indefinite metric spaces, scattering theory and other topics (Bucharest, 1985) (Operator Theory: Advances and Applications), Volume 24, Birkhäuser, 1987, pp. 123-143 | Zbl

[14] Eckhardt, Jonathan; Kostenko, Aleksey; Teschl, Gerald Spectral asymptotics for canonical systems, J. Reine Angew. Math., Volume 736 (2018), pp. 285-315 | DOI | MR | Zbl

[15] Everitt, William N. On a property of the m-coefficient of a second-order linear differential equation, J. Lond. Math. Soc., Volume 4 (1971/72), pp. 443-457 | DOI | MR

[16] Gesztesy, Fritz; Makarov, Konstantin A.; Naboko, Serguei N. The spectral shift operator, Mathematical results in quantum mechanics (Prague, 1998) (Operator Theory: Advances and Applications), Volume 108, Birkhäuser, 1999, pp. 59-90 | DOI | MR | Zbl

[17] Gesztesy, Fritz; Tsekanovskii, Eduard On matrix-valued Herglotz functions, Math. Nachr., Volume 218 (2000) no. 1, pp. 61-138 | DOI | MR | Zbl

[18] Guevara Vasquez, Fernando; Milton, Graeme W.; Onofrei, Daniel Mathematical analysis of the two dimensional active exterior cloaking in the quasistatic regime, Anal. Math. Phys., Volume 2 (2012) no. 3, pp. 231-246 | DOI | MR | Zbl

[19] Havin, Victor P. On analytic functions representable by an integral of Cauchy-Stieltjes type, Vestn. Leningr. Univ., Mat. Mekh. Astron., Volume 13 (1958) no. 1, pp. 66-79 (Russian) | MR

[20] Havin, Victor P. Analytic representation of linear functionals in spaces of harmonic and analytic functions which are continuous in a closed region, Dokl. Akad. Nauk SSSR, Volume 151 (1963), pp. 505-508 (Russian) | MR

[21] Ivanenko, Yevhen; Gustafsson, Mats; Jonsson, B. Lars G.; Luger, Annemarie; Nilsson, Börje; Nordebo, Sven; Toft, Joachim Passive approximation and optimization using B-splines, SIAM J. Appl. Math., Volume 79 (2019) no. 1, pp. 436-458 | DOI | MR | Zbl

[22] Ivanenko, Yevhen; Nedic, M.; Gustafsson, Mats; Jonsson, B. Lars G.; Luger, Annemarie; Nordebo, Sven Quasi-Herglotz functions and convex optimization, R. Soc. Open Sci., Volume 7 (2020) no. 1, 191541 | DOI

[23] Jonas, Peter Operator representations of definitizable functions, Ann. Acad. Sci. Fenn., Math., Volume 25 (2000) no. 1, pp. 41-72 | MR | Zbl

[24] Jonas, Peter On operator representations of locally definitizable functions, Operator theory in Krein spaces and nonlinear eigenvalue problems (Operator Theory: Advances and Applications), Volume 162, Birkhäuser, 2006, pp. 165-190 | DOI | MR | Zbl

[25] Kac, Izrail S.; Kreĭn, Mark G. R-functions – analytic functions mapping the upper half-plane into itself, Trans. Am. Math. Soc., Volume 103 (1974) no. 2, pp. 1-18 | Zbl

[26] Koosis, Paul Introduction to H p spaces, Cambridge Tracts in Mathematics, 115, Cambridge University Press, 1998, xiv+289 pages (with two appendices by V. P. Havin)

[27] Kreĭn, Mark G. On the trace formula in perturbation theory, Mat. Sb., N. Ser., Volume 33 (1953) no. 75, pp. 597-626 | MR

[28] Kreĭn, Mark G.; Langer, Heinz Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume Π κ zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen (German), Math. Nachr., Volume 77 (1977), pp. 187-236 | DOI | Zbl

[29] Kurlberg, Pär; Ueberschär, Henrik Superscars in the Šeba billiard, J. Eur. Math. Soc., Volume 19 (2017) no. 10, pp. 2947-2964 | DOI | Zbl

[30] Langer, Heinz; Textorius, Bjorn On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space, Pac. J. Math., Volume 72 (1977) no. 1, pp. 135-165 | DOI | MR | Zbl

[31] Langer, Matthias; Woracek, Harald Distributional representations of 𝒩 κ -functions, Math. Nachr., Volume 288 (2015) no. 10, pp. 1127-1149 | DOI | MR | Zbl

[32] Mantile, Andrea; Posilicano, Andrea Asymptotic completeness and S-matrix for singular perturbations, J. Math. Pures Appl., Volume 130 (2019), pp. 36-67 | DOI | MR | Zbl

[33] Markushevich, L. A.; Tumarkin, Genrikh Ts. On a class of functions that can be represented in a domain by an integral of Cauchy-Stieltjes type (Russian), Usp. Mat. Nauk, Volume 52 (1997), pp. 169-170 translated in Russ. Math. Surv. 52 (1997), no. 3, p. 613-614 | DOI

[34] Milton, Graeme W. The theory of composites, Cambridge Monographs on Applied and Computational Mathematics, 6, Cambridge University Press, 2002, xxviii+719 pages | DOI

[35] Milton, Graeme W.; Cassier, Maxence; Mattei, Ornella; Milgrom, Mordehai; Welters, Aaron Extending the Theory of Composites to Other Areas of Science, Milton-Patton Publishing, 2016

[36] Rosenblum, Marvin; Rovnyak, James Topics in Hardy classes and univalent functions, Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser, 1994 | DOI

[37] Shilov, Georgij E.; Gurevich, B. L. Integral, measure and derivative: a unified approach, Dover Books on Advanced Mathematics, Dover Publications, 1977 (translated from the Russian and edited by Richard A. Silverman)

[38] Teschl, Gerald Mathematical methods in quantum mechanics, Graduate Studies in Mathematics, 157, American Mathematical Society, 2014 (With applications to Schrödinger operators) | DOI

[39] Tumarkin, Genrikh Ts. On integrals of Cauchy-Stieltjes type, Usp. Mat. Nauk, Volume 11 (1956) no. 4(70), pp. 163-166 (Russian) | MR

[40] Vladimirov, Vasili S. Holomorphic functions with non-negative imaginary part in a tubular region over a cone (Russian), Mat. Sb., N. Ser., Volume 79 (1969), pp. 128-152 translated in Math. USSR-Sb. 8 (1969), p. 125-146

[41] Vladimirov, Vasili S. Generalized functions in mathematical physics, Mir Publishers, 1979 (Translated from the second Russian edition by G. Yankovskiĭ)

[42] Vladimirov, Vasili S. Methods of the theory of generalized functions, Analytical Methods and Special Functions, 6, Taylor & Francis, 2002 | DOI

[43] Zemanian, Armen H. An N-Port Realizability Theory Based on the Theory of Distributions, IEEE Trans. Circuit Theory, Volume 10 (1963) no. 2, pp. 265-274 | DOI

Cité par Sources :