We use a plethystic formula of Littlewood to answer a question of Miller on embeddings of symmetric group characters. We also reprove a result of Miller on character congruences.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2022__360_G10_1113_0, author = {Rhoades, Brendon}, title = {Plethysm and a character embedding problem of {Miller}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1113--1116}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, number = {G10}, year = {2022}, doi = {10.5802/crmath.363}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.363/} }
TY - JOUR AU - Rhoades, Brendon TI - Plethysm and a character embedding problem of Miller JO - Comptes Rendus. Mathématique PY - 2022 SP - 1113 EP - 1116 VL - 360 IS - G10 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.363/ DO - 10.5802/crmath.363 LA - en ID - CRMATH_2022__360_G10_1113_0 ER -
%0 Journal Article %A Rhoades, Brendon %T Plethysm and a character embedding problem of Miller %J Comptes Rendus. Mathématique %D 2022 %P 1113-1116 %V 360 %N G10 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.363/ %R 10.5802/crmath.363 %G en %F CRMATH_2022__360_G10_1113_0
Rhoades, Brendon. Plethysm and a character embedding problem of Miller. Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1113-1116. doi : 10.5802/crmath.363. http://www.numdam.org/articles/10.5802/crmath.363/
[1] Ribbon tableaux, Hall–Littlewood symmetric functions, quantum affine algebras, and unipotent varieties, J. Math. Phys., Volume 38 (1997) no. 2, pp. 1041-1068 | DOI | Zbl
[2] Modular representations of symmetric groups, Proc. R. Soc. Lond., Ser. A, Volume 209 (1951), pp. 333-353 | MR | Zbl
[3] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford University Press, 1995 | Zbl
[4] Personal communication (2021)
[5] Congruences in character tables of symmetric groups (2019) (https://arxiv.org/abs/1908.03741v1)
[6] Hall–Littlewood polynomials and fixed point enumeration, Discrete Math., Volume 310 (2010) no. 4, pp. 869-876 | DOI | MR | Zbl
Cité par Sources :