Combinatoire
Plethysm and a character embedding problem of Miller
Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1113-1116.

We use a plethystic formula of Littlewood to answer a question of Miller on embeddings of symmetric group characters. We also reprove a result of Miller on character congruences.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.363
Rhoades, Brendon 1

1 Department of Mathematics, University of California, San Diego La Jolla, CA, 92093, USA
@article{CRMATH_2022__360_G10_1113_0,
     author = {Rhoades, Brendon},
     title = {Plethysm and a character embedding problem of {Miller}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1113--1116},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G10},
     year = {2022},
     doi = {10.5802/crmath.363},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.363/}
}
TY  - JOUR
AU  - Rhoades, Brendon
TI  - Plethysm and a character embedding problem of Miller
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1113
EP  - 1116
VL  - 360
IS  - G10
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.363/
DO  - 10.5802/crmath.363
LA  - en
ID  - CRMATH_2022__360_G10_1113_0
ER  - 
%0 Journal Article
%A Rhoades, Brendon
%T Plethysm and a character embedding problem of Miller
%J Comptes Rendus. Mathématique
%D 2022
%P 1113-1116
%V 360
%N G10
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.363/
%R 10.5802/crmath.363
%G en
%F CRMATH_2022__360_G10_1113_0
Rhoades, Brendon. Plethysm and a character embedding problem of Miller. Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1113-1116. doi : 10.5802/crmath.363. http://www.numdam.org/articles/10.5802/crmath.363/

[1] Lascoux, Alain; Lecrec, Bernard; Thibon, Jean-Yves Ribbon tableaux, Hall–Littlewood symmetric functions, quantum affine algebras, and unipotent varieties, J. Math. Phys., Volume 38 (1997) no. 2, pp. 1041-1068 | DOI | Zbl

[2] Littlewood, Dudley E. Modular representations of symmetric groups, Proc. R. Soc. Lond., Ser. A, Volume 209 (1951), pp. 333-353 | MR | Zbl

[3] Macdonald, Ian G. Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford University Press, 1995 | Zbl

[4] Miller, Alexander R. Personal communication (2021)

[5] Miller, Alexander R. Congruences in character tables of symmetric groups (2019) (https://arxiv.org/abs/1908.03741v1)

[6] Rhoades, Brendon Hall–Littlewood polynomials and fixed point enumeration, Discrete Math., Volume 310 (2010) no. 4, pp. 869-876 | DOI | MR | Zbl

Cité par Sources :