Combinatoire, Théorie des nombres
On the minimum size of subset and subsequence sums in integers
Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1099-1111.

Let 𝒜 be a sequence of rk terms which is made up of k distinct integers each appearing exactly r times in 𝒜. The sum of all terms of a subsequence of 𝒜 is called a subsequence sum of 𝒜. For a nonnegative integer αrk, let Σα(𝒜) be the set of all subsequence sums of 𝒜 that correspond to the subsequences of length α or more. When r=1, we call the subsequence sums as subset sums and we write Σα(A) for Σα(𝒜). In this article, using some simple combinatorial arguments, we establish optimal lower bounds for the size of Σα(A) and Σα(𝒜). As special cases, we also obtain some already known results in this study.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.361
Classification : 11B75, 11B13, 11B30
Bhanja, Jagannath 1 ; Pandey, Ram Krishna 2

1 Harish-Chandra Research Institute, A CI of Homi Bhabha National Institute, Chhatnag Road, Jhunsi, Prayagraj-211019, India
2 Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667, India
@article{CRMATH_2022__360_G10_1099_0,
     author = {Bhanja, Jagannath and Pandey, Ram Krishna},
     title = {On the minimum size of subset and subsequence sums in integers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1099--1111},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G10},
     year = {2022},
     doi = {10.5802/crmath.361},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.361/}
}
TY  - JOUR
AU  - Bhanja, Jagannath
AU  - Pandey, Ram Krishna
TI  - On the minimum size of subset and subsequence sums in integers
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1099
EP  - 1111
VL  - 360
IS  - G10
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.361/
DO  - 10.5802/crmath.361
LA  - en
ID  - CRMATH_2022__360_G10_1099_0
ER  - 
%0 Journal Article
%A Bhanja, Jagannath
%A Pandey, Ram Krishna
%T On the minimum size of subset and subsequence sums in integers
%J Comptes Rendus. Mathématique
%D 2022
%P 1099-1111
%V 360
%N G10
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.361/
%R 10.5802/crmath.361
%G en
%F CRMATH_2022__360_G10_1099_0
Bhanja, Jagannath; Pandey, Ram Krishna. On the minimum size of subset and subsequence sums in integers. Comptes Rendus. Mathématique, Tome 360 (2022) no. G10, pp. 1099-1111. doi : 10.5802/crmath.361. https://www.numdam.org/articles/10.5802/crmath.361/

[1] Balandraud, Éric An addition theorem and maximal zero-sum free sets in /p, Isr. J. Math., Volume 188 (2012), pp. 405-429 | DOI | MR | Zbl

[2] Balandraud, Éric Addition theorems in 𝔽p via the polynomial method (2017) (https://arxiv.org/abs/1702.06419)

[3] Balandraud, Éric; Girard, Benjamin; Griffiths, Simon; Hamidoune, Yahya O. Subset sums in abelian groups, Eur. J. Comb., Volume 34 (2013) no. 8, pp. 1269-1286 | DOI | MR | Zbl

[4] Bhanja, Jagannath A note on sumsets and restricted sumsets, J. Integer Seq., Volume 24 (2021) no. 4, 21.4.2, 9 pages | MR | Zbl

[5] Bhanja, Jagannath; Pandey, Ram K. Inverse problems for certain subsequence sums in integers, Discrete Math., Volume 343 (2020) no. 12, 112148, 11 pages | MR | Zbl

[6] DeVos, Matt; Goddyn, Luis; Mohar, Bojan A generalization of Kneser’s addition theorem, Adv. Math., Volume 220 (2009) no. 5, pp. 1531-1548 | DOI | MR | Zbl

[7] DeVos, Matt; Goddyn, Luis; Mohar, Bojan; Šámal, Robert A quadratic lower bound for subset sums, Acta Arith., Volume 129 (2007) no. 2, pp. 187-195 | DOI | MR | Zbl

[8] Erdős, Pál; Heilbronn, Hans A. On the addition of residue classes mod p, Acta Arith., Volume 9 (1964), pp. 149-159 | DOI | MR | Zbl

[9] Freeze, Michael; Gao, Weidong; Geroldinger, Alfred The critical number of finite abelian groups, J. Number Theory, Volume 129 (2009) no. 11, pp. 2766-2777 | DOI | MR | Zbl

[10] Griffiths, Simon Asymptotically tight bounds on subset sums, Acta Arith., Volume 138 (2009) no. 1, pp. 53-72 | DOI | MR | Zbl

[11] Grynkiewicz, David J. On a partition analog of the Cauchy–Davenport theorem, Acta Math. Hung., Volume 107 (2005) no. 1-2, pp. 167-181 | MR | Zbl

[12] Hamidoune, Yahya O. Adding distinct congruence classes, Comb. Probab. Comput., Volume 7 (1998) no. 1, pp. 81-87 | DOI | MR | Zbl

[13] Hamidoune, Yahya O.; Lladó, Anna S.; Serra, Oriol On complete subsets of the cyclic group, J. Comb. Theory, Ser. A, Volume 115 (2008) no. 7, pp. 1279-1285 | DOI | MR | Zbl

[14] Jiang, Xing-Wang; Li, Ya-Li On the cardinality of subsequence sums, Int. J. Number Theory, Volume 14 (2018) no. 3, pp. 661-668 | DOI | MR | Zbl

[15] Mistri, Raj K.; Pandey, Ram K. A generalization of sumsets of set of integers, J. Number Theory, Volume 143 (2014), pp. 334-356 | DOI | MR | Zbl

[16] Mistri, Raj K.; Pandey, Ram K. The direct and inverse theorems on integer subsequence sums revisited, Integers, Volume 6 (2016), #A32, 8 pages | MR | Zbl

[17] Mistri, Raj K.; Pandey, Ram K.; Prakash, Om Subsequence sums: direct and inverse problems, J. Number Theory, Volume 148 (2015), pp. 235-256 | DOI | MR | Zbl

[18] Nathanson, Melvyn B. Inverse theorems for subset sums, Trans. Am. Math. Soc., Volume 347 (1995) no. 4, pp. 1409-1418 | DOI | MR | Zbl

[19] Nathanson, Melvyn B. Additive Number Theory. Inverse problems and the geometry of sumsets, Graduate Texts in Mathematics, 165, Springer, 1996 | DOI | Zbl

[20] Olson, John E. An addition theorem modulo p, J. Comb. Theory, Volume 5 (1968), pp. 45-52 | DOI | MR | Zbl

[21] Peng, Jiangtao; Hui, Wanzhen; Li, Yuanlin; Sun, Fang On subset sums of zero-sum free sets of abelian groups, Int. J. Number Theory, Volume 15 (2019) no. 3, pp. 645-654 | DOI | MR | Zbl

  • Mohan; Pandey, Ram Krishna Generalized H-fold sumset and Subsequence sum, Comptes Rendus. Mathématique, Volume 362 (2024) no. G1, p. 1 | DOI:10.5802/crmath.483
  • Jiang, Xing-Wang; Li, Ya-Li On the cardinality of subsequence sums II, Comptes Rendus. Mathématique, Volume 362 (2024) no. G11, p. 1279 | DOI:10.5802/crmath.613

Cité par 2 documents. Sources : Crossref