Combinatoire
On the non-very generic intersections in discriminantal arrangements
Comptes Rendus. Mathématique, Tome 360 (2022) no. G9, pp. 1027-1038.

In 1985 Crapo introduced in [3] a new mathematical object that he called geometry of circuits. Four years later, in 1989, Manin and Schechtman defined in [13] the same object and called it discriminantal arrangement, the name by which it is known now a days. Those discriminantal arrangements (n,k,𝒜 0 ) are builded from an arrangement 𝒜 0 of n hyperplanes in general position in a k-dimensional space and their combinatorics depends on the arrangement 𝒜 0 . On this basis, in 1997 Bayer and Brandt (see [2]) distinguished two different type of arrangements 𝒜 0 calling very generic the ones for which the intersection lattice of (n,k,𝒜 0 ) has maximum cardinality and non-very generic the others. Results on the combinatorics of (n,k,𝒜 0 ) in the very generic case already appear in Crapo [3] and in 1997 in Athanasiadis [1] while the first known result on non-very generic case is due to Libgober and the first author in 2018. In their paper [12] they provided a necessary and sufficient condition on 𝒜 0 for which the cardinality of rank 2 intersections in (n,k,𝒜 0 ) is not maximal anymore. In this paper we further develop their result providing a sufficient condition on 𝒜 0 for which the cardinality of rank r, r2, intersections in (n,k,𝒜 0 ) decreases.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.360
Classification : 52C35, 05B35, 05C99
Settepanella, Simona 1 ; Yamagata, So 2

1 Department of Economics and Statistics, Torino University, Italy
2 Department of Mathematics, Hokkaido University, Japan
@article{CRMATH_2022__360_G9_1027_0,
     author = {Settepanella, Simona and Yamagata, So},
     title = {On the non-very generic intersections in discriminantal arrangements},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1027--1038},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     number = {G9},
     year = {2022},
     doi = {10.5802/crmath.360},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.360/}
}
TY  - JOUR
AU  - Settepanella, Simona
AU  - Yamagata, So
TI  - On the non-very generic intersections in discriminantal arrangements
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1027
EP  - 1038
VL  - 360
IS  - G9
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.360/
DO  - 10.5802/crmath.360
LA  - en
ID  - CRMATH_2022__360_G9_1027_0
ER  - 
%0 Journal Article
%A Settepanella, Simona
%A Yamagata, So
%T On the non-very generic intersections in discriminantal arrangements
%J Comptes Rendus. Mathématique
%D 2022
%P 1027-1038
%V 360
%N G9
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.360/
%R 10.5802/crmath.360
%G en
%F CRMATH_2022__360_G9_1027_0
Settepanella, Simona; Yamagata, So. On the non-very generic intersections in discriminantal arrangements. Comptes Rendus. Mathématique, Tome 360 (2022) no. G9, pp. 1027-1038. doi : 10.5802/crmath.360. http://www.numdam.org/articles/10.5802/crmath.360/

[1] Athanasiadis, Christos A. The Largest Intersection Lattice of a Discriminantal Arrangement, Beitr. Algebra Geom., Volume 40 (1999) no. 2, pp. 283-289 | MR | Zbl

[2] Bayer, Margaret M.; Brandt, Keith A. Discriminantal arrangements, fiber polytopes and formality, J. Algebr. Comb., Volume 6 (1997) no. 3, pp. 229-246 | DOI | MR | Zbl

[3] Crapo, Henry The combinatorial theory of structures, Matroid theory (Recski, A.; Locaśz, L., eds.) (Colloquia Mathematica Societatis János Bolyai), Volume 40, North-Holland, 1985, pp. 107-213 | MR | Zbl

[4] Crapo, Henry; Rota, Gian-Carlo The resolving bracket, Invariant methods in discrete and computational geometry (White, Neil, ed.), Kluwer Academic Publishers, 1995, pp. 197-222 | DOI | Zbl

[5] Falk, Michael A note on discriminantal arrangements, Proc. Am. Math. Soc., Volume 122 (1994) no. 4, pp. 1221-1227 | DOI | MR | Zbl

[6] Felsner, Stefan; Ziegler, Günter M. Zonotopes associated wuth hugher Bruhat orders, Discrete Math., Volume 241 (2001) no. 1-3, pp. 301-312 | DOI | Zbl

[7] Kapranov, Mikhail M.; Voevodsky, Vladimir A. Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results), Cah. Topologie Géom. Différ. Catég., Volume 32 (1991) no. 1, pp. 11-27 | Numdam | MR | Zbl

[8] Kapranov, Mikhail M.; Voevodsky, Vladimir A. Free n-category generated by a cube, oriented matroids, and higher Bruhat orders, Funct. Anal. Appl., Volume 25 (1991) no. 1, pp. 50-52 | MR | Zbl

[9] Kapranov, Mikhail M.; Voevodsky, Vladimir A. Braided monoidal 2-categories and Manin-Schechtman higher braid groups, J. Pure Appl. Algebra, Volume 92 (1994) no. 3, pp. 241-267 | DOI | MR | Zbl

[10] Kohno, Toshitake Integrable connections related to Manin and Schechtman’s higher braid groups, Ill. J. Math., Volume 34 (1990) no. 2, pp. 476-484 | MR | Zbl

[11] Lawrence, Ruth J. A presentation for Manin and Schechtman’s higher braid groups (1991) MSRI pre-print (http://www.ma.huji.ac.il/~ruthel/papers/91premsh.html)

[12] Libgober, Anatoly; Settepanella, Simona Strata of discriminantal arrangements, J. Singul., Volume 18 (2018), pp. 440-454 (Volume in honor of E. Brieskorn) | MR | Zbl

[13] Manin, Yurĭ I.; Schechtman, Vadim V. Arrangements of Hyperplanes, Higher Braid Groups and Higher Bruhat Orders, Algebraic number theory (Advanced Studies in Pure Mathematics), Volume 17, Academic Press, 1989, pp. 289-308 | DOI | MR | Zbl

[14] Orlik, Peter Introduction to Arrangements, Regional Conference Series in Mathematics, 72, American Mathematical Society, 1989 | DOI | Zbl

[15] Orlik, Peter; Terao, Hiroaki Arrangements of Hyperplanes, Grundlehren der Mathematischen Wissenschaften, 300, Springer, 1992 | DOI | Zbl

[16] Perling, Markus Divisorial cohomology vanishing on toric varieties, Doc. Math., Volume 16 (2011), pp. 209-251 | MR | Zbl

[17] Sawada, Sumire; Settepanella, Simona; Yamagata, So Discriminantal arrangement, 3×3 minors of Plücker matrix and hypersurfaces in Grassmannian Gr(3,n), C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 11, pp. 1111-1120 | DOI | Zbl

[18] Sawada, Sumire; Settepanella, Simona; Yamagata, So Pappus’s Theorem in Grassmannian Gr(3, n ), Ars Math. Contemp., Volume 16 (2019) no. 1, pp. 257-276 | MR | Zbl

[19] Ziegler, Günter M. Higher Bruhat orders and cyclic hyperplane arrangements, Topology, Volume 32 (1993) no. 2, pp. 259-279 | DOI | MR | Zbl

Cité par Sources :